可微但偏导数不连续同样没啥用

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
到目前为止,我们学到的经验是,知道一个函数的偏导数或方向导数并不能告诉你该函数是否可微或连续。即使在单变量情况下,单凭导数也远没有你想象的那么多信息;我们将在例1.9.4中看到,一个函数 ( f: \mathbb{R} \to \mathbb{R} ) 在 ( x ) 处可以有正导数,但它在 ( x ) 的邻域内却没有增加!当然,我们并不是说导数毫无价值。在这些病态情况下的问题是函数不是连续可微的:其导数不连续。只要一个函数是连续可微的,情况就会表现得很好。

总而言之,就是因为偏导数带来的不连续性,虽然导数在该点处可以有定义,但却不连续,以此题为例,导函数在趋近原点时发生无穷的正负震荡,因而函数原点邻域内没有呈现出变化趋势,所以尽管函数在原点连续,也可微,但由于导函数不连续,导致函数在原点附近的任何邻域都无法被线性/一次函数所近似,这是一个非常有意思的例子

从比较大(宏观小微观大)的范围来看,函数确实表现得和y=0.5x很相似,也就是说它是边震荡变线性,但随着缩放范围变大,这个邻域变得越来越小,但这个震荡现象却不会消失

注意到这种抽象得奇怪范例反例通常是由用正弦函数加上一些反比例或者二次反比例函数构造出来的

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值