前段时间,Meta 开源了 Llama 3.2 轻量化模型,为移动端跑大模型提供了新选择!同时,Llama 3.2 视觉模型(Llama 3.2 Vision)也正式开源,号称媲美 GPT-4o。前两天,Llama 3.2 Vision 已在 Ollama 上线!
今日分享,就对它实测一番。
最后,应用到我们上篇的票据识别
任务中,看看效果真有官宣的那么惊艳么?
1. Llama 3.2 亮点
老规矩,还是简短介绍下:Llama 3.2 都有哪些亮点?
一句话:轻量化 + 视觉多模态能力!
具体点:
- 文本模型:有 1B 和 3B 版本,即便参数少,也支持128k tokens的上下文长度;基于LoRA和SpinQuant 对模型进行深度优化,内存使用量减少41%,推理效率翻了2-4倍。
- 多模态模型:有 11B 和 90B 版本,在视觉理解方面,与Claude3 Haiku和GPT 4o-mini 可 PK。
2. Llama 3.2 实测
Ollama 是面向小白友好的大模型部署工具,为此本篇继续采用 Ollama 跑 Llama 3.2。
2.1 环境准备
参考上述教程,假设你在本地已经准备好 Ollama。
当前 Ollama Library 中已支持 Llama 3.2 下载,因此,一行命令拉起 llama3.2-vision。
ollama run llama3.2-vision
如果遇到如下报错:
pulling manifest
Error: pull model manifest: 412:
The model you are attempting to pull requires a newer version of Ollama.
说明你的 ollama 版本需要更新了。
如果你也和我一样,采用 docker 安装,则需要删除容器,重新下载最新镜像进行安装:
docker stop ollama
docker rm ollama
docker image rm ollama/ollama
# 注:海外镜像,国内用户需自备
docker pull ollama/ollama
可以发现,当前最新版本为 0.4.1:
ollama --version
ollama version is 0.4.1
然后,再起一个容器:
docker run -d --gpus "device=2" -v ollama:/root/.ollama -p 3002:11434 --restart unless-stopped --name ollama ollama/ollama
注:我这里指定 --gpus "device=2"
,如果单张显存不够,需指定多张卡,Ollama 会帮你自动分配。
显存占用情况如何?
2.2 文本模型
进入容器,并下载模型 llama3.2 3B版本:
docker exec -it ollama /bin/bash
ollama run llama3.2
显存占用:请确保至少 4 G 显存。
2.3 多模态模型
进入容器,并下载模型 llama3.2-vision 11B版本:
docker exec -it ollama /bin/bash
ollama run llama3.2-vision
显存占用:请确保至少 12 G 显存。
注:ollama 中模型默认采用了 4bit 量化。
3. 接入 Dify
3.1 模型接入
要把 Ollama 部署的模型接入 Dify 有两种方式。
首先,找到设置 - 模型供应商。
方式一: 找到 Ollama 类型,然后进行添加,记得把Vision
能力打开:
方式二:
把 Ollama 模型接入 OneAPI,然后在模型供应商这里选择 OpenAI-API-compatible
。
个人更推荐 方式二,你会体会到接口统一的快乐~
3.2 应用集成
最后,我们在上篇的基础上,把用到 Qwen2-VL 的组件,LLM 全部替换成刚刚接入的 llama3.2-vision,如下图:
实测效果咋样?
嗯~ o( ̄▽ ̄)o 价格等基本信息还是抓到了。
只是,相比上篇实测的 Qwen2-VL 就差点意思了:
- 从中文指令遵循上看:给到同样的提示词,llama3.2-vision 压根不按你的意图来;
- 从识别结果上看:中文 OCR 也被 Qwen2-VL 甩开好几条街。
当然,换用 90B 的模型会不会好很多?感兴趣的朋友可以试试~
结论:现阶段,对于票据识别这个任务而言,综合考虑成本和效果,还是调用云端的 Qwen2-VL-72B 吧。
写在最后
本文带大家本地跑了 Meta 最新开源的 Llama 3.2,并在票据识别任务上进行了实测。
个人体验而言:Llama 系列,都得在中文指令数据上微调后,才能中文场景中使用,同等参数规模下,国产大模型其实更具性价比。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓