Dynamic Graph-Based Feature Learning With Few Edges Considering Noisy Samples for Rotating Machinery Fault Diagnosis考虑噪声样本的基于少边动态图特征学习的旋转机械故障诊断
Abstract
Due to its ability to learn the relationship among nodes from graph data, the graph convolution network (GCN) has received extensive attention. In the machine fault diagnosis field, it needs to construct input graphs reflecting features and relationships of the monitoring signals. Thus, the quality of the input graph affects the diagnostic performance.
由于能够从图数据中学习节点之间的关系,图卷积网络(GCN)受到了广泛的关注。在机器故障诊断领域,需要构建反映监测信号特征和关系的输入图。因此,输入图的质量会影响诊断性能。
But it still has two limitations: 1) the constructed input graph usually has redundant edges, consuming excessive computational costs; 2) the
constructed input graph cannot reflect the relationship between the noisy signals well.
但它仍然存在两个局限性:
1)构造的输入图通常有冗余的边,消耗过多的计算成本;
2)构造的输入图不能很好地反映噪声信号之间的关系。
In order to overcome them, a dynamic graph-based feature learning with few edges considering noisy samples is proposed for rotating machinery fault diagnosis in this article. Noisy vibration signals are converted into one spectrum feature-based static graph, where redundant edges are simplified by the distance metric function. Edge connections of the input static graph are updated according to the relationship among high-level features extracted by the GCN.
为了克服这些问题,本文提出了一种考虑噪声样本的基于动态图的少边特征学习方法用于旋转机械故障诊断。
将噪声振动信号转换成一个基于频谱特征的静态图,图中冗余边缘通过距离度量函数进行简化。
Based on this, dynamic input graphs are reconstructed as new graph representations for noisy samples. To verify the effectiveness of the proposed method, validation experiments were conducted on practical platforms, and results show that the dynamic input graph with few edges can effectively improve the diagnostic performance under different SNRs.
根据GCN提取的高级特征之间的关系,更新输入静态图的边缘连接。
在此基础上,将动态输入图重构为噪声样本的新图表示。
为了验证该方法的有效性,在实际平台上进行了验证实验,结果表明,在不同信噪比下,少边的动态输入图可以有效提高诊断性能。
I. INTRODUCTION
THE NORMAL operation of the rotating machinery is a prerequisite for guaranteeing machine productivity.
It is important to monitor the health state of the rotating machinery, avoiding major failure events and guaranteeing the reliability of the production process [1]–[3].
旋转机械的正常运行是保证机器生产率的前提。监测旋转机械的健康状态,避免重大故障事件的发生,保证生产过程的可靠性非常重要 [1]-[3]。
A large number of sensors are installed on the machine to monitor its operation state, providing a data basis for fault diagnosis. These sensor signals are processed and evaluated to judge whether faults have existed and then classify fault types.
对监测旋转机械的健康状态,避免重大故障事件,保证生产过程的可靠性具有重要意义[1]-[3]。
Generally, the performance of the traditional fault diagnosis method relies on manually selected features [4]–[6]. Recently, machine learning-based diagnosis methods have been developed to automatically extract fault features from the monitoring signal without prior knowledge [7]–[9]. They can effectively deal with a small dataset but perform poorly when handling the ever-increasing big data.
通常,传统的故障诊断方法的性能依赖于人工选择的特征[4]-[6]。最近,基于机器学习的诊断方法被开发出来,可以在不需要先验知识的情况下从监测信号中自动提取故障特征[7]-[9]。它们可以有效地处理小数据集,但在处理不断增长的大数据时表现不佳。
The rapid development in computing power has spawned deep learning (DL)-based diagnosis methods, which can effectively process big data. DL models, such as autoencoder [10]–[12], convolutional neural network (CNN) [13]–[15], and long shortterm memory (LSTM) [16]–[18], have been demonstrated an excellent technique for rotating machinery fault diagnosis. For example, Liu et al. [19] adopted a multisensor fusion strategy and an autoencoder for gearbox fault diagnosis. Li et al. [20] developed an automatic learning rate-based CNN for bearing fault diagnosis. Ma et al. [21] proposed an LSTM-based neural network, predicting the remaining life of rotating machinery.
However, there are still some problems to be solved. These DL models can only learn the correlation between input signals, ignoring the relationships between them [22]. As the change of health states, these relationships of the signals vary a lot too. Thus, it is necessary to mine them for machine fault diagnosis.
计算能力的快速发展催生了基于深度学习(DL)的诊断方法,可以有效地处理大数据。深度学习模型,如自编码器[10]-[12]、卷积神经网络(CNN)[13]
-[15]和长短期记忆(LSTM)[16] -[18],已被证明是旋转机械故障诊断的一种优秀技术。例如,Liu等[19]采用多传感器融合策略和自编码器进行变速箱故障诊断。Li等[20]开发了一种基于自动学习率的CNN用于轴承故障诊断。Ma等[21]提出了一种基于lstm的神经网络来预测旋转机械的剩余寿命。然而,仍有一些问题需要解决。这些DL模型只能学习输入信号之间的相关性,而忽略了它们之间的关系[22]。随着健康状态的变化,这些信号之间的关系也发生了很大的变化。因此,有必要对其进行挖掘,用于机械故障诊断。
To deal with this, the raw signals can be converted into graph data for further analysis [23]–[25]. From the node level, the signal is transformed into a node representation, and its features become node attributes. From the edge level, the edge connection between two nodes reflects the relationship between the signals. However, the traditional DL-based method just can operate on Euclidean structure data, including the image represented by the matrix and the signal represented by the vector. It cannot perform on non-Euclidean structure graph data [22].
为了解决这个问题,可以将原始信号转换成图形数据进行进一步分析[23]-[25]。
从节点级开始,将信号转换为节点表示,其特征成为节点属性。
从边缘层面来看,两个节点之间的边缘连接反映了信号之间的关系。
然而,传统的基于dl的方法只能处理欧氏结构数据,包括矩阵表示的图像和向量表示的信号。它不能在非欧几里德结构图数据上执行[22]。
Recently, graph convolution network (GCN) demonstrates its ability in learning the graph feature and accomplishing classification tasks in various fields [26]–[28]. For example, Marino et al. [29] used the GCN to learn the prior knowledge in the knowledge graph and successfully accomplished the image classification task. Yao et al. [30] successfully applied GCN to text classification tasks by constructing document relation networks and co-word networks. Kipf et al. [31] proposed a Chebyshev-polynomial-based GCN, classifying the corresponding categories of documents by learning the structural information in the citation network. The above results show the
unique advantages of GCN in processing graph structure data and solving classification tasks, providing a reference for the application in the field of machine fault diagnosis. In essence, fault classification is also a classification task; therefore, GCN could have great potential in a machine fault diagnosis.
近年来,图卷积网络(GCN)在学习图特征和完成各个领域分类任务方面的能力得到了证明[26]-[28]。如Marino等[29]利用GCN学习知识图中的先验知识,成功地完成了图像分类任务。Yao等[30]通过构建文档关系网络和共词网络,成功地将GCN应用于文本分类任务。Kipf等[31]提出了一种基于chebyhev多项式的GCN,通过学习引文网络中的结构信息对相应的文献类别进行分类。以上结果显示了GCN在处理图结构数据和解决分类任务方面的独特优势,为GCN在机械故障诊断领域的应用提供了参考。从本质上讲,故障分类也是一个分类任务;因此,GCN在机器故障诊断中具有很大的潜力。
Motivated by successful cases of GCN, researchers begin to develop GCN-based fault diagnosis methods. However, raw signals are the Euclidean structure data, which need to be converted into non-Euclidean structure graph data reflecting features and relationships of the signals [32]–[34]. Therefore, a variety of graph construction methods are proposed for applying GCN to fault diagnosis. For example, Li et al. [35] adopted CNN to extract features for graph construction and used GCN for life prediction of rotating machinery. Wang et al. [36] proposed a vibration-indicator-based GCN, and the edge connections of the graph are determined by the Euclidean distance of vibration
indicators. Yan et al. [22] developed an affinity-graph-based multireceptive field GCN, using the cosine similarity of frequency features to determine the edge connections. These graph construction methods relying on data points and time–frequency domain features have achieved good results, but there are still two limitations: 1) there are many redundant edges in the constructed graph, consuming excessive computational costs; 2) noise will make the signal analysis method invalid so that the constructed graph, relying on the signal features, cannot reflect the relationships between signals accurately.
在GCN成功案例的激励下,研究人员开始开发基于GCN的故障诊断方法。
而原始信号是欧几里得结构数据,需要将其转换为反映信号特征和关系的非欧几里得结构图数据[32]-[34]。 。。。 。。。
因此,为了将GCN应用于故障诊断,提出了多种图的构造方法。如Li等[35]采用CNN提取特征进行图构建,采用GCN进行旋转机械寿命预测。Wang等[36]提出了一种基于振动指标的GCN,图的边缘连接由振动指标的欧氏距离确定。Yan等[22]开发了一种基于亲和图的多接受场GCN,使用频率特征的余弦相似度来确定边缘连接。
。。。 这些依赖于数据点和时频域特征的图构建方法取得了较好的效果,但仍存在两个局限性:
1)构建的图中存在许多冗余边,消耗了过多的计算成本;
2)噪声会使信号分析方法失效,使构建的图依赖于信号特征,不能准确反映信号之间的关系。
To address these problems, a dynamic graph (DG)-based feature learning with few edges considering noisy samples is proposed for rotating machinery fault diagnosis in this article. Raw signals are converted into a static graph (SG) first using spectrum features extracted from noisy vibration signals, where the redundant edges are simplified by the distance metric function. The edge connections in the SG are only established between nodes and their k closest neighbors. In the training process, the edge connections of the input SG are updated according to the relationship among high-level features extracted by the GCN. Based on this, dynamic input graphs are reconstructed as new graph representations for noisy samples. The main contributions are summarized as follows.
为了解决这些问题,本文提出了一种考虑噪声样本的基于少边动态图特征学习的旋转机械故障诊断方法。
首先利用从噪声振动信号中提取的频谱特征将原始信号转换为静态图(SG),其中冗余边缘通过距离度量函数进行简化。
SG中的边连接仅在节点与其k个最近邻之间建立。
在训练过程中,根据GCN提取的高级特征之间的关系更新输入SG的边缘连接。
在此基础上,将动态输入图重构为噪声样本的新图表示。
主要贡献总结如下。
- The redundant edges in the SG, which is constructed using the spectrum feature of a noisy sample are simplified by the distance metric function.
- In the model training, the edge connections of the input graph are updated according to the relationship among high-level features extracted by the GCN.
- The performance of GCN dealing with signals under different SNRs is analyzed and discussed.
1)利用带噪声样本的频谱特征构造的SG中的冗余边缘,通过距离度量函数进行简化。
2)在模型训练中,根据GCN提取的高级特征之间的关系更新输入图的边缘连接。
3)分析讨论了GCN处理不同信噪比下信号的性能。
The rest of this article is organized as follows. Section II introduces the principle of GCN. In Section III, the construction of the
SG and the DG is presented. The proposed diagnosis framework is illustrated and summarized as an algorithm in Section IV. The
effectiveness of the proposed method was verified by two case studies in Section V, and Section VI concludes this article.
本文的其余部分组织如下。第二节介绍了GCN的原理。第三部分介绍了SG和DG的构建。第四节将提出的诊断框架作为一种算法进行说明和总结。第五节通过两个案例研究验证了所提出方法的有效性,第六节对本文进行了总结。
II. THEORETICAL BACKGROUND
The spectral graph convolution and a standard GCN model are briefly described.
简要介绍了谱图卷积和标准GCN模型。
A. Problem Description
噪声是信号中无用的信息成分。噪声会降低深度学习方法提取故障特征的能力。因此,直接使用噪声信号作为DL方法的输入不能获得满意的诊断结果。
In the existing research based on GCN, the relationship between samples is established by mining the preliminary characteristics
of the signal, so as to obtain the graph [22]. The noise signal will greatly affect the structure of the graph and reduce the quality of
the graph. The purpose of this article is to weaken the influence of noise on graph construction, improve the quality of graphs
based on noisy signals, and improve the diagnosis performance of DL methods.
在现有的基于GCN的研究中,通过挖掘信号的初步特征来建立样本间的关系,从而得到图[22]。
噪声信号会极大地影响图的结构,降低图的质量。
本文的目的是减弱噪声对图构建的影响,提高基于噪声信号的图的质量,提高深度学习方法的诊断性能。
B. Graph Convolution Network
对于具有节点特征的无向图,可以表示为,其中表示节点集。E为边集,为图g的特征矩阵,为邻接矩阵,其值定义如下:
对称归一化拉普拉斯矩阵定义如下:
式中为的度矩阵,为单位矩阵。
对图拉普拉斯矩阵进行正交分解,得到特征向量和特征值:
式中由特征值组成,为特征向量矩阵。
图G与特征矩阵F的谱图卷积可以定义为:
其中为谱图卷积的输出,为图的傅里叶变换,为Λ的特征函数,参数为可学习的θ,“∗”为图卷积。由重新缩放的特征值组成,为L的最大特征值。是切比雪夫系数的向量,是k阶切比雪夫多项式,递归关系可以定义为,其中。是切比雪夫多项式系数,它决定了图卷积的接受场。
通过特征变换,图卷积层的最终输出可以用可训练权矩阵得到,如下所示:
节点分类的标准两层GCN模型[31]包括图卷积层、激活函数和分类器Softmax,如图1所示:
其中σ为激活函数,如Rectified Linear Unit (ReLu),为第一图卷积层和第二图卷积层的可训练权矩阵,Z为节点的标记。
III. DG MODEL
A. Constructing the SG From Spectrum
前人[37]提出了的k近邻图(k- nng),其中[38]是将每个元素与其k近邻连接起来的有向图。
节点p的k个近邻表示节点p与k个近邻中的节点之间的距离是p到其他节点的第k个最小距离。
k个最近邻的样本倾向于共享相同的故障,具有相同故障的节点之间的边可以增强GCN的故障特征学习能力。
然而,由于有向图的拉普拉斯矩阵不对称,谱图卷积不能在有向图上进行。
因此,我们开发了一个SG,将kNNG转化为无向图,如图2所示。执行以下步骤来构建SG。
1)数据预处理:
对于信号,采用归一化得到如(8)所示。此外,Z-score归一化也是常用的数据归一化方法[35],两种方法的效果通过实验验证是相似的
其中为归一化信号。
数据归一化后,对采集到的每个样本进行快速傅里叶变换(FFT),得到频谱如下:
这里,得到频谱,是FFT的结果,取一半的结果作为样本节点特征
2)寻找k个最近邻:
为了获得SG,需要使用欧几里得距离找到节点Vp的k个最近邻,这是一种常用的测量样本间绝对距离的方法[39]。
这种构造SG的策略类似于计算样本与集群之间相似性的k近邻操作。
其计算如下:
其中,为节点特征,为欧几里得距离度量函数,为节点Vp的k近邻集,是节点Vp的第k近邻。
3) Constructing the SG:
在找到k个最近邻居后,节点p的k个最近邻居中的节点与节点p没有方向地相互连接。
每个节点重复此操作,即可得到SG。
需要注意的是,节点q是节点p的邻居并不意味着节点p是节点q的邻居。
因此,每个节点的边数是不确定的,但至少是(k-1)条。
随着k的增加,构造图中的边数也会增加,导致算法的计算时间变长。
当k的值太大时,在k近邻集中很可能出现与节点p标签不同的节点,这降低了模型的故障学习能力,导致故障诊断性能下降。
在本文中,根据验证实验,将k人为设置为最小2。
因此,通过查找并连接每个节点的k个最近邻居,可以得到由每个样本组成的SG,图3所示为两个节点的三种情况。
SGs的特点可以概括为:
1)每个节点至少有两条边,同时限制边的总数,防止边缘冗余;
2)在不知道每个节点的标签的情况下,可以建立具有相同标签的节点之间的边缘连接。
B. Constructing the DG
噪声会改变 SG 中节点的 k 个近邻,这样两个相似度较低的节点就会被连接起来。
因此,为了提高基于噪声样本的 SG 的质量,我们构建了一个 DG,如图 4 所示。具体步骤如下。
步骤1:
使用输入的SG对交叉熵损失的GCNs进行几个epoch的训练。
步骤2:
将训练好的GCN提取的高级特征作为节点的参考特征,并根据这些特征更新输入SG的边缘连接。
步骤3:
在训练过程中构建DG,即更新后的SG。将DG作为GCN训练的新输入图。
步骤4:
经过多次更新,将最终更新的DG Gn输入到训练好的GCN模型中,得到每个节点的标签。
DG中的节点数没有变化,为样本数。
对于边缘,使用新的特征矩阵对边缘进行更新,重建样本间的关系。
IV. PROPOSED DIAGNOSIS FRAMEWORK
所提出的诊断框架的总体流程图如图5所示,包括数据处理、DG构建和使用GCN进行故障诊断。相应的算法如下:
V. EXPERIMENTAL VERIFICATION
为了验证该方法的有效性,在一级减速齿轮箱和行星齿轮箱两个数据集上进行了实验。所有算法都是用Intel酷睿i7-8700K CPU用Python和Pytorch编写的。
A. One-Stage Reduction Gearbox
1) Data Description:
如图6所示,实验平台由制动控制器、磁力动力制动器、扭矩传感器、一级减速箱和伺服电机组成。加速度计(PCB-356A16)放置在一级减速箱上收集振动信号。此外,将轴转速设置为1500和900 r/min,因此啮合频率fm可计算为1250和750hz。采样频率fc设为5 kHz (fc > = 2fm),满足香农定理[40]。
在一级减速箱上,预制了三种裂纹齿轮。与正常齿轮一起,实验中讨论了四种不同的健康状态。
模拟变速箱运行过程中6种载荷(0、2、4、6、8和10 Nm)和两种轴速的工况,不同载荷下健康状态相同的样品共用同一标签。
每种健康状态有240个样本,每种工作条件有40个样本。因此,样本总数为960。
每个样本中有1024个数据点。训练集与测试集的比例为3:2,详细的实验设置如表1所示
2) Gaussian Noise Addition:
为了验证处理噪声信号的性能,在采集的信号中加入不同信噪比(SNR)的高斯噪声,包括 -10、-5、0、5 和 10 dB。
在采集到的信号中加入高斯噪声后,可以按照第三节的步骤构建SG。T1、T2、T3分别设为150、450、550。根据参数选择实验将DG的训练历元M设为30,计算机的计算能力越强,历元值越小。
3) Improvement of the DG:
利用现有的5个GCN模型,比较SG和DG的分类精度。
五种GCN模型包括基本GCN[31]、三种不同核k的Chebyshev GCN (ChebyNet)[41]和多接受场GCN (MRF-GCN)[22]。
详细参数设置如表2所示。
在模型训练过程中,先将学习率设置为0.01,然后自适应变化。优化者是亚当。
值得一提的是,为了避免过拟合,在每个模型的每个图卷积层之后都添加了dropout。为了消除结果的偶然性,进行了10次试验。
给出了每次实验的平均精度和平均时间。
时间包括数据读取、数据预处理、图构建、模型训练和测试。
由于每个信噪比级别的时间大致相似,因此给出总体时间,如表III所示。本文方法在5种信噪比下的混淆矩阵如图7所示。
从图7中可以看出,信号的噪声能量逐渐降低,正确分类的样本数量逐渐减少。
由表III可以看出,对于每个GCN模型,DG的分类精度都高于SG。
此外,基于dg的GCN模型比基于sg的GCN模型更稳定。
噪声会改变SG中节点的k个最近邻,使两个相似度较低的节点连接起来。
为了进一步提高构建图的质量,使用从GCN中提取的特征来构建DG。
由于GCN具有强大的图形学习能力,GCN可以从噪声信号中挖掘故障信息。
因此,使用GCN的输出来重建样本之间的关系可以提高图的质量。
GCN模型可以从高质量的故障图中获得更有效的故障信息。这就是为什么DG可以减少噪音影响的原因。
随着信号噪声能量的逐渐降低,基于sgg的GCN模型的性能与基于dg的GCN模型基本一致,但后者需要更多的训练时间。因此,当噪声较弱或无噪声时,只需构造SG即可完成诊断任务。
为了更有说服力,计算连接具有相同标签的两个节点的总边和特殊边的数量。
结果如表4所示。与SG相比,DG中有更多的特殊边,因此GCN可以聚合更多相同的故障特征,从而提高DG的性能。
随着信号噪声能量的逐渐降低,基于sgg的GCN模型的性能与基于dg的GCN模型基本一致,但后者需要更多的训练时间。因此,当噪声较弱或无噪声时,只需构造SG即可完成诊断任务。
为了更有说服力,计算连接具有相同标签的两个节点的总边和特殊边的数量。
结果如表4所示。与SG相比,DG中有更多的特殊边,因此GCN可以聚合更多相同的故障特征,从而提高DG的性能。
4) Comparing With Existing Graph Construction Methods:
研究了图构造方法对GCN模型的影响。本文采用了基于振动指标的图(VIG)[36]、亲和图(AG)[22]、超图(SuperGraph)[39]、SG和DG五种图构建方法。
AG由所有样本组成,其中60%的节点作为训练集,40%的节点作为测试集。对比实验选择MRF-GCN模型,数据设置见表1。各图构建方法的详细实验设置见表5。
为了消除结果的偶然性,进行了10次试验。给出了每次实验的平均精度,如图8所示。
DG的分类精度是最好的,特别是当信号信噪比为−10 dB时。
随着信噪比的降低,五种图构建方法的诊断准确率降低。
此外,噪声对SuperGraph和VIG的影响很大,给SuperGraph和VIG中的故障信息的表征带来了困难。
结果表明,噪声对图像质量的影响很大。因此,有必要提高构造图的质量。
5) Generalization Ability Under Different Loads:
本文方法的泛化能力会影响处理实际诊断任务的性能,尤其是在可变工况下。
因此,研究了在不同工作条件和信噪比水平下的泛化能力。
在6种不同负载(0、2、4、6、8和10 Nm)和两种轴速(1500和900 r/min)下,使用不同信噪比(- 10、- 5、0、5和10 dB)下的监测信号。
进行泛化能力验证实验,选取某一负荷的信号作为测试集,其他信号作为训练集。五次试验的平均结果列于表六。
在泛化能力验证实验中可以得到类似的分类精度如表III所示。随着信噪比水平的逐步提高,该方法在每个测试集中都能获得更高的分类精度,特别是当信噪比大于0 dB时。此外,该方法对每个测试集都能获得满意的分类结果。因此,所提出的方法具有一定的泛化能力。
B. Planetary Gearbox Platform
1)数据描述:
采用动力传动系统动态模拟器采集监测数据**。该平台有两个子数据集,分别是齿轮数据集和轴承数据集**,这里使用轴承数据集[42]。
实验中研究了两种不同的工况,分别设置转速系统负载为20 Hz-0V和30 Hz-2V。
轴承数据集中有五种健康状态,包括四种故障类型和一种正常状态。轴承故障类型的详细描述见表七。因此,轴承数据集的故障诊断是一项多工况下复杂故障类型的五类分类任务。
每种健康状态有200个样本,每种工作状态下采集的样本数量相同。每个样本中有1024个数据点。在轴承数据集中共获得1000个样本。每种健康状态下随机抽取10%的样本作为训练集,其余样本作为测试集。轴承数据集的详细设置如表8所示。
2) Fault Diagnosis Result:
传统的基于dl的方法往往需要大量的训练样本来训练模型。
为了验证该方法在处理少量训练样本时的性能,只使用10%的样本来训练GCN模型。此外,通过对比实验验证了该方法在少量训练样本下的有效性。
传统的基于dl的方法,如传统的三层CNN、ResNet50、VGG11、VIG、AG和SG进行比较。对于CNN、VGG11和ResNet50,振动信号的长度为1024,提取频谱特征后,由频谱特征组成的输入特征向量的长度为512。
之后,将光谱特征重构为(16,16,2)的大小。VIG、AG、SG中GCN的结构与表V相同,只是输入大小从480变为1000。
基于dl的不同方法的结果如图9所示,每种方法的计算复杂度如表IX所示。
注:M为输出特征图的大小,Ke为卷积核的大小,|E|为边数,Cin为输入通道数,Cout为输出通道数。
从图9可以看出,本文方法的分类准确率最高,达到了98.69%。
此外,这些基于gcn的深度学习方法的准确率在96%以上。
因此,利用 GCN 强大的图特征学习能力,本文提出的方法只需少量训练样本即可完成诊断任务。
如表 VIII 所示,在四种图中,DG 的边数最少,这意味着 MRF-GCN 可以利用 DG 上较少的边数学习到更多的故障信息。
通过减少冗余边,DG 降低了图特征提取的计算复杂度。
VI. CONCLUSION
本文提出了一种考虑噪声样本的基于边缘稀疏特征学习的旋转机械故障诊断方法。探讨了噪声对基于信号特征的图的影响。该方法不仅减少了冗余边缘,而且提高了基于噪声信号特征的图的质量。
此外,在两个实际平台上进行了验证实验,结果验证了所提方法的诊断性能。与SG相比,DG可以提高常用GCN模型的诊断性能。基于dg的GCN模型具有学习噪声信号特征表示的能力。对于无噪声信号,GCN通过从边缘较少的DG中学习图特征,可以在有限的训练样本中获得优异的诊断结果。该方法具有应用于在线故障诊断的潜力。
然而,在构造DG时只考虑了节点信息,忽略了边缘信息。对于一个节点,其k个最近邻之间的边连接的优先级应该高于其他边。为了进一步提高构造图的质量,在今后的工作中,需要对边缘上的权值进行分配和研究。