2025年必读的十大免费数据科学与机器学习书籍推荐

进入机器学习领域时,你会发现有着海量的学习资源,甚至多到让人不知所措。然而,并非所有资源都是一样的,许多资源可能并不适合你的学习过程。

图片

为了帮助你在学习和精通机器学习的路上少走弯路,下面为你推荐2025年值得关注的十大免费数据科学书籍。


1. 机器学习基础

在开始任何复杂的机器学习实现之前,我们都需要扎实的基础。《Foundations of Machine Learning》(作者:Mehryar Mohri、Afshin Rostamizadeh 和 Ameet Talwalkar)将带你了解许多被广泛应用的机器学习技术的基本理论,涵盖如下主题:

  • PAC学习框架与泛化理论

  • 支持向量机与核方法

  • 提升算法与在线学习算法

  • 多类别分类、排序与回归

  • 最大熵模型与强化学习

如果你想深入理解机器学习的工作原理,这本书是不错的起点。


2. 实用机器学习:初学者指南与伦理洞察

掌握了基础理论后,还需要学习如何结合道德伦理来应用机器学习模型。《Practical Machine Learning: A Beginner's Guide with Ethical Insights》(作者:Ally S. Nyamawe、Mohamedi M. Mjahidi、Noe E. Nnko、Salim A. Diwani、Godbless G. Minja 和 Kulwa Malyango)将为你系统讲解理论与应用,包括:

  • 机器学习基础

  • 机器学习数学

  • 数据准备

  • 机器学习运维

  • 负责任的AI与可解释AI

如果你需要一本实用的应用指南,这本书值得一读。


3. 机器学习数学

许多机器学习算法都是由数学和统计方程构成的,能够从数据中学习。因此,理解机器学习背后的数学原理非常重要。《Mathematics for Machine Learning》(作者:Marc Peter Deisenroth、A. Aldo Faisal 和 Cheng Soon Ong)涵盖了以下主题:

  • 线性代数

  • 向量微积分

  • 概率与分布

  • 连续优化

  • 机器学习中的数学问题

如果你对机器学习的实际应用很感兴趣,这本书必不可少。


4. 决策算法

机器学习算法被广泛用于帮助企业做出更优决策。我们可以依赖数据模式来辅助决策,甚至将部分决策权交给机器。《Algorithms for Decision Making》(作者:Mykel J. Kochenderfer、Tim A. Wheeler 和 Kyle H. Wray)将帮助你理解如下内容:

  • 概率推理

  • 序列决策

  • 信念状态规划与状态估计

  • 多智能体决策

  • 实际应用

本书将帮助你更好地理解为何机器学习模型在决策中如此有用。


5. 学习量化

前面的书籍为我们打下了机器学习的基础,现在是时候学习更为具体的内容了。《Learning to Quantify》(作者:Andrea Esuli、Alessandro Fabris、Alejandro Moreo 和 Fabrizio Sebastiani)会带你深入了解“量化”——一种在无标签数据中估算类别分布的有监督学习任务。主要内容包括:

  • 量化基础

  • 量化实验与评估

  • 有监督的量化学习

  • 量化的现实应用

  • 量化研究的演变

如果你想深入了解量化领域,这本书不容错过。


6. 梯度期望:预测神经网络的结构、起源与综合

神经网络已经成为现代许多机器学习模型的标准。通过探索哺乳动物大脑的神经结构,人工神经网络能够学习如何作为预测模型。《Gradient Expectations: Structure, Origins, and Synthesis of Predictive Neural Networks》(作者:Keith L. Downing)涵盖了如下主题:

  • 预测的基本概念

  • 生物预测理念

  • 预测网络的出现

  • 人工预测网络的发展

想要理解高级机器学习模型的基础理念,务必阅读本书。


7. 强化学习:导论

强化学习已成为自监督学习的基础,在这种学习方式中,模型能够理解环境中的变化并根据变化作出反应。《Reinforcement Learning: An Introduction》(作者:Richard S. Sutton 和 Andrew G. Barto)将理论与实际应用相结合,内容包括:

  • 强化学习基础

  • 强化学习核心算法

  • 策略梯度与Actor-Critic方法

  • 函数逼近技术

  • 离策略学习

  • 强化学习应用

如果你对强化学习感兴趣,这本书值得深入阅读。


8. 可解释机器学习

机器学习用于预测和决策,但算法往往难以解释为何会做出特定预测。对于终端用户来说,理解模型预测背后的原因非常重要,这也是建立信任的关键。可解释机器学习为用户理解模型提供了途径。《Interpretable Machine Learning》(作者:Christoph Molnar)会带你了解:

  • 可解释性的目标

  • 可解释模型

  • 局部模型无关方法

  • 全局模型无关方法

  • 神经网络解释

如果你需要与用户建立信任,这本书至关重要。


9. 公平与机器学习

机器学习模型只是从历史数据中学习的工具。如果训练数据中存在偏见或不道德内容,这些问题同样会反映在模型输出中。因此,公平性在机器学习中至关重要,以确保不会对用户造成伤害。《Fairness and Machine Learning》(作者:Solon Barocas、Moritz Hardt 和 Arvind Narayanan)将带你探索如下内容:

  • 自动决策的合法性

  • 公平性的相对概念

  • 因果关系

  • 反歧视法律

  • 歧视测试

作为数据领域的专业人士,这本书对于确保模型的伦理与公平性非常重要。


10. 机器学习生产化:从模型到产品

最好的机器学习模型是那些真正投入生产的模型。无论模型的实验性能多么优秀,如果无法落地应用,就毫无意义。作为机器学习实践者,我们必须了解如何将模型从实验阶段推向实际生产。《Machine Learning in Production: From Models to Products》(作者:Christian Kästner)涵盖了如下主题:

  • 模型系统与架构设计

  • 质量保障

  • 负责任的机器学习

  • 流程与团队建设

通过本书,学习用最佳标准部署你的模型。


结语

机器学习是一项令人兴奋的技能,但想要全面掌握其中的知识却并非易事。通过这些资源,你可以领先一步,提升自我,助力实现理想职业目标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值