[paper阅读笔记][AAAI2024]CoPL: Contextual Prompt Learning for Vision-Language Understanding

Paper的任务

提出一种新的方法,名为Contextual Prompt Learning (CoPL),用于改进视觉-语言理解模型的泛化能力。

任务的科学问题

  1. 现有方法依赖全局图像特征,可能无法捕捉到图像中的局部细节
  2. 现有方法中,提示向量通常被赋予相同的权重,这忽略了不同提示对于不同图像可能具有不同的相关性。

(提示向量是用于增强模型对特定任务理解的向量表示,等权重问题指的是这些向量在模型中被不区分地同等对待。)

challenges

  1. 局部特征的利用
  2. 动态提示向量的生成:如何根据图像的局部上下文动态生成和加权提示向量,以提高模型对视觉-语言任务的适应性。
  3. 上下文信息的融合:如何有效地将图像的上下文信息融合到提示学习过程中,以提升模型对图像内容的理解。

motivation

  1. 提高泛化能力:现有视觉-语言模型在处理未见过的类别或跨数据集时泛化能力有限,研究者希望提升模型在这些情况下的性能。
  2. 解决局部特征利用不足:现有模型可能过于依赖全局图像特征,而忽略了对局部特征的利用,特别是在细粒度识别任务中。
  3. 动态提示向量的生成:为了使模型能够根据图像内容动态调整提示向量,以更好地捕捉图像的语义信息。

方法和框架

方法 

图像和文本输入:模型接收图像和文本输入,图像被分割成小块。

局部特征提取:使用视觉Transformer从图像块中提取局部特征。

条件标记生成:通过一个小型神经网络(meta-net)为每个图像块生成一个条件标记。

注意力权重计算:利用对齐函数计算每个提示向量与图像块特征之间的语义相关性,得到注意力权重。

上下文表示计算:根据注意力权重,计算每个图像块的上下文表示。

动态提示向量更新:结合上下文表示和基础提示向量,生成动态提示向量。

预测概率计算:使用动态提示向量和图像特征计算预测概率。

训练和优化:通过最小化损失函数来训练模型参数,包括基础提示向量和meta-net的权重。

  • 框架图

  • 结果

    • 标准分类任务结果

    • 零样本(zero-shot)分类任务

    • 跨数据集泛化

    • 消融研究

实验是怎么做的?

  • 设置了哪些实验?

    1. 标准分类任务:在多个标准的图像分类数据集上评估CoPL模型的性能,如ImageNet、Caltech101、OxfordPets等。
    2. Zero-shot Performance
    3. One-shot Training
    4. 跨数据集泛化(Domain Generalization)
    5. 消融研究
  • 消去实验都消去了什么?

    • 局部图像特征:用全局图像特征替代局部特征,以比较局部特征和全局特征对模型性能的影响。

创新点在哪里?

  1. 局部特征对齐

    • CoPL利用图像的局部特征来学习提示向量,这与以往依赖全局特征的方法不同,有助于模型更好地捕捉图像的细节信息。
  1. 动态提示向量

    • 通过学习图像的局部上下文信息,CoPL能够动态地调整提示向量的权重,从而生成与当前图像内容更加相关的提示。

笔记

  1. Caltech101是一个广泛使用的计算机视觉数据集,它由101个类别的图像组成,每个类别大约有40到800张图像不等。这些类别包括物体、动物、场景和其他各种图像。Caltech101旨在用于识别任务,特别是用于测试图像识别算法的性能。
  2. FGVCAircraft是一个专门用于细粒度图像分类的数据集,它专注于飞机的识别和分类。该数据集由Maji等人于2013年创建,并被广泛用于计算机视觉领域的研究,尤其是在需要区分相似物体(如不同型号的飞机)的任务中。
  3. EuroSAT是一个用于土地利用和土地覆盖分类的卫星图像数据集。它由Helber等人在2018年创建,专为遥感图像识别任务设计,包含了多种类型的卫星图像,每张图像都标注了对应的土地覆盖类别。
  4. CoOp (Context Optimization):是一种视觉-语言模型,它通过训练一组连续的向量(称为上下文标记或prompts)来改善模型对图像和文本的理解。
  5. CoCoOp (Conditional Context Optimization):是CoOp的扩展,它通过为每个图像实例生成条件化的提示来提高模型的性能。CoCoOp使用一个额外的神经网络(称为meta-net)来生成条件向量,该向量与CoOp中的提示向量结合,生成依赖于图像的动态提示。
  6. ProGrad:是一种优化方法,它通过在训练过程中对提示(prompts)进行优化来提升模型性能。
  7. CLIP (Contrastive Language-Image Pre-training):是一个大规模的视觉-语言预训练模型,它通过对比学习的方式同时学习图像和文本的表示。CLIP模型包含两个编码器,一个用于处理图像,另一个用于处理文本。通过训练,模型学会将语义上相关的图像和文本对拉近,而不相关的对推远,从而在联合空间中建立起图像和文本的联系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瘦小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值