最近,检索增强生成(RAG)技术在AI界引起了广泛关注。作为一种将知识库与生成模型结合的新型架构,RAG大大提升了AI应用的实际表现。而在构建RAG系统时,Milvus作为业界领先的开源向量数据库,扮演着关键角色。本文将通过在Dify平台上使用Milvus,带领大家构建一个高效的RAG系统,探索向量数据库的实际应用场景。
01.
Milvus基本原理介绍
1.1 为什么要用向量数据库?
在AI应用场景下,比如图像识别、自然语言处理等,数据往往是非结构化的。传统的关系型数据库很难处理这些高维度的非结构化数据。因此,向量数据库应运而生,专门设计用于存储和管理这种数据,并可以实现高效的相似度检索。
向量数据库通过将复杂的数据(如图片、文本)转化为向量的形式进行存储,每个向量代表数据中的不同特征,方便快速检索相似内容。比如在推荐系统中,可以通过用户行为向量,检索出相似用户的行为进行个性化推荐。
1.2 为什么要用Milvus?
Milvus 是目前领先的开源向量数据库之一,设计之初就针对大规模非结构化数据的存储与检索进行了优化。它具备如下优势:
高性能:Milvus基于诸如FAISS、Annoy和HNSW等先进的向量搜索库,能够处理亿级甚至更大规模的向量数据,适合需要高效检索的应用场景。
可扩展性:Milvus采用了存储和计算分离的架构,支持水平扩展,能够灵活适应从小型应用到大型分布式系统的需求。
广泛的应用场景:Milvus可以应用于各种AI场景,如图像、视频检索,文本检索,推荐系统等,具有广泛的行业适用性
通过使用Milvus,我们能够大大提升在大规模向量检索场景下的处理效率,从而让AI应用变得更加智能、高效。
1.3 Milvus架构概述
Milvus 建立在流行的矢量搜索库(包括 Faiss、HNSW、DiskANN、SCANN 等)之上,旨在对包含数百万、数十亿甚至数万亿矢量的密集矢量数据集进行相似性搜索。
Milvus 采用共享存储架构,存储和计算分离,计算节点可水平扩展。Milvus 遵循数据平面和控制平面分解的原则,包括:接入层、协调器服务、工作节点和存储。在扩展或灾难恢复方面,这些层是相互独立的。
1.4 Milvus 的应用场景
Milvus 的应用场景非常广泛,包括但不限于:
图像和视频检索。我们可以使用 Milvus 存储图像和视频的向量数据,然后使用这些向量数据进行检索。
文本检索。我们可以使用 Milvus 存储文本的向量数据,然后使用这些向量数据进行检索。
推荐系统。我们可以使用 Milvus 存储用户和物品的向量数据,然后使用这些向量数据进行推荐。
自然语言处理。我们可以使用 Milvus 存储文本的向量数据,然后使用这些向量数据进行自然语言处理。
**02.
**
Dify 平台的介绍
Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。
03.
Milvus 与 Dify 平台的部署实践
在部署过程中,我发现Milvus提供了三种部署模式,分别适合不同的使用场景。接下来,我会分别介绍这三种模式,并通过简单的示范,带你快速上手。
模式一:Milvus Lite
是一个可以轻松集成到您的应用程序中的 Python 库。作为 Milvus 的轻量级版本,它非常适合在 Jupyter Notebook 中快速原型设计或在资源有限的边缘设备上运行。
3.1.1 设置 Milvus Lite
pip install -U pymilvus
3.1.2 连接Miluvs Lite
在pymilvus
中,指定本地文件名作为 MilvusClient 的 uri 参数将使用 Milvus Lite。
运行下面代码后,将在当前文件夹中生成一个名为milvus_demo.db的数据库文件。
from pymilvus import MilvusClient
client = MilvusClient("./milvus_demo.db")
模式二:Milvus Standalone
3.2.1 首先,我们需要获取Milvus的部署文件,只需在终端运行以下命令
wget https://github.com/milvus-io/milvus/releases/download/v2.4.5/milvus-standalone-docker-compose.yml -O docker-compose.yml
3.2.2 然后执行以下命令,Milvus就可以启动啦!```
sudo docker compose up -d
**3.2.3 等一会儿,就会看到Milvus已经在后台运行**
docker ps -a
模式三:Milvus Distributed
如果你的需求是处理大规模数据,比如亿级别的向量检索,那么Milvus Distributed正是为你量身定制。它可以部署在Kubernetes集群中,适合云原生架构的大规模场景。
简单部署示范:
1.配置好Kubernetes集群。
2.使用Helm或Operator进行Milvus的分布式部署。
Milvus在Dify上的实战
说明:请确保系统已安装docker和docker-compose
将dify项目Clone到本地
git clone https://github.com/langgenius/dify.git
拷贝env并修改指定使用Milvus
cp .env.example .env
执行docker-compose启动dify
docker-compose -f docker-compose.yaml up -d
访问dify平台并登录
使用Milvus构建RAG
说明:部署前已准备好模型,此文档中对如何部署本地模型不做赘述
准备数据集创建知识库上传测试文档
验证向量检索是否成功
可以看到dify日志里显示是成功的
Milvus数据库中也有数据了
尝试验证RAG效果
04.
未来展望
想象一下,未来我们可以用Milvus处理数以亿计的图像或文本,并在几秒内完成检索。而且,Milvus不断进化,未来的版本可能在数据安全性、可视化、性能扩展等方面做得更加出色。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓