阿里千问 3 登顶全球最强开源模型,性能超越 DeepSeek-R1、OpenAI-o1

阿里巴巴最新推出的千问3开源大模型,无疑是AI领域中的一匹黑马,堪称“性价比之王”。其参数仅为行业同类产品的三分之一,但性能却一骑绝尘,跃居全球榜首,甚至超越了OpenAI和谷歌旗下的顶尖模型。更令人惊叹的是,它将部署成本大幅降低,让中小企业也得以触及AI技术的巅峰,开启了普惠AI的新篇章。

图片


 

阿里巴巴开源新一代通义千问模型 Qwen3,登顶全球最强开源模型。

4 月 29 日凌晨,阿里巴巴开源新一代通义千问模型 Qwen3(简称千问 3),参数量仅为 DeepSeek-R1 的 1/3,成本大幅下降,性能全面超越 R1、OpenAI-o1 等全球顶尖模型,登顶全球最强开源模型。千问 3 是国内首个「混合推理模型」,「快思考」与「慢思考」集成进同一个模型,对简单需求可低算力「秒回」答案,对复杂问题可多步骤「深度思考」,大大节省算力消耗。

图片

千问 3 采用混合专家(MoE)架构,总参数量 235B,激活仅需 22B。千问 3 预训练数据量达 36T,并在后训练阶段多轮强化学习,将非思考模式无缝整合到思考模型中。千问 3 在推理、指令遵循、工具调用、多语言能力等方面均大幅增强,即创下所有国产模型及全球开源模型的性能新高:在奥数水平的 AIME25 测评中,千问 3 斩获 81.5 分,刷新开源纪录;在考察代码能力的 LiveCodeBench 评测中,千问 3 突破 70 分大关,表现甚至超过 Grok3;在评估模型人类偏好对齐的 ArenaHard 测评中,千问 3 以 95.6 分超越 OpenAI-o1 及 DeepSeek-R1。性能大幅提升的同时,千问 3 的部署成本还大幅下降,仅需 4 张 H20 即可部署千问 3 满血版,显存占用仅为性能相近模型的三分之一。

图片

千问 3 性能图

千问 3 还提供了丰富的模型版本,包含 2 款 30B、235B 的 MoE 模型,以及 0.6B、1.7B、4B、8B、14B、32B 等 6 款密集模型,每款模型均斩获同尺寸开源模型 SOTA(最佳性能):千问 3 的 30B 参数 MoE 模型实现了 10 倍以上的模型性能杠杆提升,仅激活 3B 就能媲美上代 Qwen2.5-32B 模型性能;千问 3 的稠密模型性能继续突破,一半的参数量可实现同样的高性能,如 32B 版本的千问 3 模型可跨级超越 Qwen2.5-72B 性能。

同时,所有千问 3 模型都是混合推理模型,API 可按需设置「思考预算」(即预期最大深度思考的 tokens 数量),进行不同程度的思考,灵活满足 AI 应用和不同场景对性能和成本的多样需求。比如,4B 模型是手机端的绝佳尺寸;8B 可在电脑和汽车端侧丝滑部署应用;32B 最受企业大规模部署欢迎,有条件的开发者也可轻松上手。

图片

Qwen3 开源模型家族

千问 3 为即将到来的智能体 Agent 和大模型应用爆发提供了更好的支持。在评估模型 Agent 能力的 BFCL 评测中,千问 3 创下 70.8 的新高,超越 Gemini2.5-Pro、OpenAI-o1 等顶尖模型,将大幅降低 Agent 调用工具的门槛。同时,千问 3 原生支持 MCP 协议,并具备强大的工具调用(function calling)能力,结合封装了工具调用模板和工具调用解析器的 Qwen-Agent 框架,将大大降低编码复杂性,实现高效的手机及电脑 Agent 操作等任务。

据了解,千问 3 系列模型依旧采用宽松的 Apache2.0 协议开源,并首次支持 119 多种语言,全球开发者、研究机构和企业均可免费在魔搭社区、HuggingFace 等平台下载模型并商用,也可以通过阿里云百炼调用千问 3 的 API 服务。个人用户可立即通过通义 APP 直接体验千问 3,夸克也即将全线接入千问 3。

据悉,阿里通义已开源 200 余个模型,全球下载量超 3 亿次,千问衍生模型数超 10 万个,已超越美国 Llama,成为全球第一开源模型。

  如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值