🧠 从零构建 Agentic RAG:让大模型学会自主检索与回答
在 AI 应用开发中,我们常常会遇到这样一个难题: 👉 用户提的问题,大模型(LLM)到底该直接回答,还是需要先去检索资料再作答?
如果模型 总是依赖记忆,可能会“张冠李戴”;如果 盲目调用检索,又会增加延迟、浪费算力。
这时,Agentic RAG(自主检索增强生成系统) 就派上用场了!
🚀 什么是 Agentic RAG?
RAG(Retrieval-Augmented Generation)本身就是“检索 + 生成”的组合,而 Agentic RAG 则更进一步:
- 让大模型学会判断何时需要检索;
- 检索后还能评估结果是否相关;
- 如果不相关,可以自动改写问题并重试;
- 最终输出简洁准确的答案。
换句话说,它不仅是“搜索 + 回答”,而是一个会思考的检索智能体。
🛠️ 构建步骤
整个系统的搭建,可以分为 七大模块:
1. 文档预处理
- 从网页或本地文档中获取资料;
- 切分成小片段(chunk),便于存入向量数据库。
2. 建立检索工具
- 将文档片段存入向量数据库(例如 Qdrant);
- 构建 语义检索工具,让大模型可以随时调用。
3. 智能决策:回答还是检索?
- 系统会先分析用户问题;
- 决定是 直接生成答案,还是 调用检索工具。
4. 相关性评估(Grade Documents)
- 如果检索到的内容与问题无关,系统会打回;
- 否则继续生成答案。
5. 自动改写问题(Rewrite Question)
- 当检索结果不理想时,Agent 会尝试“换个问法”;
- 然后再次发起检索,提升准确率。
6. 基于上下文生成答案
- 调用检索到的文档;
- 结合用户问题,生成简洁、精准的回答。
7. 组装完整工作流
- 将所有步骤通过工作流(StateGraph)串联;
- 实现从“提问 → 判断 → 检索 → 筛选 → 回答”的闭环。
📊 系统能力一览
这个 Agentic RAG 系统的亮点包括:
✅ 自主判断是否需要检索;
✅ 检索后自动评估相关性;
✅ 如果不相关,能自行改写问题再尝试;
✅ 最终输出高质量、基于事实的回答。
简单来说,它就像给大模型加了一个“知识中控台”,既聪明又稳健。
🔮 应用场景
- 企业知识库问答:员工提问时,系统自动决定是否调用内部文档。
- 学术助手:当模型遇到冷门论文时,可以自动检索资料。
- 产品客服:对接 FAQ 和工单系统,实现更智能的客户支持。
📌 总结
Agentic RAG 不仅仅是“检索增强”,而是让 AI 具备了 自主决策能力。
未来,我们将会看到越来越多的应用,将这种能力应用到科研、教育、医疗、金融等场景,让大模型真正变成“懂知识、会思考”的智能体。
本系列课程源代码位于:
https://github.com/realyinchen/AgenticRAG
想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享!
👇👇扫码免费领取全部内容👇👇

一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势
想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI:
1. 100+本大模型方向电子书

2. 26 份行业研究报告:覆盖多领域实践与趋势
报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:

- 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
- 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
- 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
- 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。
3. 600+套技术大会 PPT:听行业大咖讲实战
PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:

- 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
- 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
- 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
- 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。
二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走
想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!

1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位
面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析:

2. 102 道 AI 大模型真题:直击大模型核心考点
针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:

3. 97 道 LLMs 真题:聚焦大型语言模型高频问题
专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:

三、路线必明: AI 大模型学习路线图,1 张图理清核心内容
刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!

路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。

L1阶段:启航篇丨极速破界AI新时代
L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

L5阶段:专题集丨特训篇 【录播课】

四、资料领取:全套内容免费抱走,学 AI 不用再找第二份
不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:
👇👇扫码免费领取全部内容👇👇

2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!
3万+

被折叠的 条评论
为什么被折叠?



