Softmax函数将输入值映射到多个类别上的概率分布,通常用于多类别分类问题。它的输出是一个概率分布,其中每个类别都有一个概率值,这些概率值的总和等于1。
而Sigmoid函数则将输入值映射到0到1之间的连续实数范围,通常用于二元分类问题。它的输出可以看作是一个概率值,表示某一事件发生的概率。
从机器学习的角度来看,对于多分类问题,我们通常需要为每个类别计算一个得分或概率,然后选择得分最高的类别作为预测结果。Softmax函数正好满足这个需求,它可以将原始输出转化为类别概率分布,使得每个类别都有一个概率值,方便选择最有可能的类别。
而对于二分类问题,我们只需要判断一个样本是否属于某个类别,因此可以使用Sigmoid函数将原始输出转化为一个概率值,然后根据阈值来判断分类结果。
*注意:虽然Sigmoid函数主要用于二分类问题,但在处理多分类问题时,也可以通过多次使用Sigmoid函数来实现。即对于每个类别都使用Sigmoid函数计算一个概率值,然后将这些概率值组合起来形成最终的分类结果。然而,这种方法在处理类别数较多的多分类问题时可能会变得复杂和低效,因此通常更倾向于使用Softmax函数来处理多分类问题。