1 单目稠密重建
给定200张图像,同时已知它们的轨迹真值,求第1张图像的深度图。注意这200张图与第1张图都有重叠的观测。
cpp文件内容为,
#include <iostream>
#include <chrono>
#include <vector>
#include <fstream>
using namespace std;
#include <boost/timer.hpp>
// for sophus
#include <sophus/se3.hpp>
using Sophus::SE3d;
// for eigen
#include <Eigen/Core>
#include <Eigen/Geometry>
using namespace Eigen;
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
using namespace cv;
/**********************************************
* 本程序演示了单目相机在已知轨迹下的稠密深度估计
* 使用极线搜索 + NCC 匹配的方式,与书本的 12.2 节对应
* 请注意本程序并不完美,你完全可以改进它——我其实在故意暴露一些问题(这是借口)。
***********************************************/
// ------------------------------------------------------------------
// parameters
const int boarder = 20; // 边缘宽度
const int width = 640; // 图像宽度
const int height = 480; // 图像高度
const double fx = 481.2f; // 相机内参
const double fy = -480.0f;
const double cx = 319.5f;
const double cy = 239.5f;
const int ncc_window_size = 3; // NCC 取的窗口半宽度
const int ncc_area = (2 * ncc_window_size + 1) * (2 * ncc_window_size + 1); // NCC窗口面积
const double min_cov = 0.1; // 收敛判定:最小方差
const double max_cov = 10; // 发散判定:最大方差
// ------------------------------------------------------------------
// 重要的函数
/// 从 REMODE 数据集读取数据
bool readDatasetFiles(
const string &path,
vector<string> &color_image_files,
vector<SE3d> &poses,
cv::Mat &ref_depth
);
/**
* 根据新的图像更新深度估计
* @param ref 参考图像
* @param curr 当前图像
* @param T_C_R 参考图像到当前图像的位姿
* @param depth 深度
* @param depth_cov 深度方差
* @return 是否成功
*/
bool update(
const Mat &ref,
const Mat &curr,
const SE3d &T_C_R,
Mat &depth,
Mat &depth_cov2
);
/**
* 极线搜索
* @param ref 参考图像
* @param curr 当前图像
* @param T_C_R 位姿
* @param pt_ref 参考图像中点的位置
* @param depth_mu 深度均值
* @param depth_cov 深度方差
* @param pt_curr 当前点
* @param epipolar_direction 极线方向
* @return 是否成功
*/
bool epipolarSearch(
const Mat &ref,
const Mat &curr,
const SE3d &T_C_R,
const Vector2d &pt_ref,
const double &depth_mu,
const double &depth_cov,
Vector2d &pt_curr,
Vector2d &epipolar_direction
);
/**
* 更新深度滤波器
* @param pt_ref 参考图像点
* @param pt_curr 当前图像点
* @param T_C_R 位姿
* @param epipolar_direction 极线方向
* @param depth 深度均值
* @param depth_cov2 深度方向
* @return 是否成功
*/
bool updateDepthFilter(
const Vector2d &pt_ref,
const Vector2d &pt_curr,
const SE3d &T_C_R,
const Vector2d &epipolar_direction,
Mat &depth,
Mat &depth_cov2
);
/**
* 计算 NCC 评分
* @param ref 参考图像
* @param curr 当前图像
* @param pt_ref 参考点
* @param pt_curr 当前点
* @return NCC评分
*/
double NCC(const Mat &ref, const Mat &curr, const Vector2d &pt_ref, const Vector2d &pt_curr);
// 双线性灰度插值
inline double getBilinearInterpolatedValue(const Mat &img, const Vector2d &pt) {
uchar *d = &img.data[int(pt(1, 0)) * img.step + int(pt(0, 0))];
double xx = pt(0, 0) - floor(pt(0, 0));
double yy = pt(1, 0) - floor(pt(1, 0));
return ((1 - xx) * (1 - yy) * double(d[0]) +
xx * (1 - yy) * double(d[1]) +
(1 - xx) * yy * double(d[img.step]) +
xx * yy * double(d[img.step + 1])) / 255.0;
}
// ------------------------------------------------------------------
// 一些小工具
// 显示估计的深度图
void plotDepth(const Mat &depth_truth, const Mat &depth_estimate);
// 像素到相机坐标系
inline Vector3d px2cam(const Vector2d px) {
return Vector3d(
(px(0, 0) - cx) / fx,
(px(1, 0) - cy) / fy,
1
);
}
// 相机坐标系到像素
inline Vector2d cam2px(const Vector3d p_cam) {
return Vector2d(
p_cam(0, 0) * fx / p_cam(2, 0) + cx,
p_cam(1, 0) * fy / p_cam(2, 0) + cy
);
}
// 检测一个点是否在图像边框内
inline bool inside(const Vector2d &pt) {
return pt(0, 0) >= boarder && pt(1, 0) >= boarder
&& pt(0, 0) + boarder < width && pt(1, 0) + boarder <= height;
}
// 显示极线匹配
void showEpipolarMatch(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_curr);
// 显示极线
void showEpipolarLine(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_min_curr,
const Vector2d &px_max_curr);
/// 评测深度估计
void evaluateDepth(const Mat &depth_truth, const Mat &depth_estimate);
// ------------------------------------------------------------------
int main(){
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
string path = "../test_data";
// 从数据集读取数据
vector<string> color_image_files;
vector<SE3d> poses_TWC;
Mat ref_depth;
bool ret = readDatasetFiles(path, color_image_files, poses_TWC, ref_depth);
if (ret == false) {
cout << "Reading image files failed!" << endl;
return -1;
}
cout << "read total " << color_image_files.size() << " files." << endl;
// 第一张图
Mat ref = imread(color_image_files[0], 0); // gray-scale image
SE3d pose_ref_TWC = poses_TWC[0];
double init_depth = 3.0; // 深度初始值
double init_cov2 = 3.0; // 方差初始值
Mat depth(height, width, CV_64F, init_depth); // 深度图
Mat depth_cov2(height, width, CV_64F, init_cov2); // 深度图方差
for (int index = 1; index < color_image_files.size(); index++) {
cout << "*** loop " << index << " ***" << endl;
Mat curr = imread(color_image_files[index], 0);
if (curr.data == nullptr) continue;
SE3d pose_curr_TWC = poses_TWC[index];
SE3d pose_T_C_R = pose_curr_TWC.inverse() * pose_ref_TWC; // 坐标转换关系: T_C_W * T_W_R = T_C_R
update(ref, curr, pose_T_C_R, depth, depth_cov2);
evaluateDepth(ref_depth, depth);
plotDepth(ref_depth, depth);
imshow("image", curr);
waitKey(1);
}
cout << "estimation returns, saving depth map ..." << endl;
imwrite("depth.png", depth);
depth.convertTo(depth, CV_16U, 1000.0); //depthScale = 1000.0,计算深度时记得除以这个值!
imwrite("CV_16U.png", depth);
cout << "done." << endl;
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> timeUsed = chrono::duration_cast<chrono::duration<double>> (t2 - t1);
cout << "执行程序耗时" << timeUsed.count() / 60.0 << "分钟!" << endl;
return 0;
}
/**
* 从REMODE数据集中读取数据
* @param path 数据集文件路径
* @param color_image_files 彩色图向量
* @param poses 位姿真值向量,以T_WC形式存储
* @param ref_depth 第1张图深度真值
*/
bool readDatasetFiles(
const string &path,
vector<string> &color_image_files,
vector<SE3d> &poses,
cv::Mat &ref_depth)
{
ifstream fin(path + "/first_200_frames_traj_over_table_input_sequence.txt");
if(!fin) return false;
while(!fin.eof()){
//数据格式:图像文件名 tx, ty, tz, qx, qy, qz, qw
string image;
fin >> image;
if(image == "") break; //解决“eof指向文件结尾的下一位”的设定带来的麻烦
double data[7];
for(double &d : data) fin >> d;
if(image != "scene_107.png") //并不存在scene_107.png图片
color_image_files.push_back(path + string("/images/") + image);
poses.push_back(SE3d(Quaterniond(data[6], data[3], data[4], data[5]), Vector3d(data[0], data[1], data[2])));
}
fin.close();
fin.open(path + "/depthmaps/scene_000.depth");
ref_depth = cv::Mat(height, width, CV_64F);
if(!fin) return false;
for(int y = 0; y < height; y++){
for(int x = 0; x < width; x++){
double depth = 0;
fin >> depth;
ref_depth.ptr<double>(y)[x] = depth / 100.0;
}
}
fin.close();
return true;
}
// 对整个深度图进行更新
bool update(const Mat &ref, const Mat &curr, const SE3d &T_C_R, Mat &depth, Mat &depth_cov2) {
for (int x = boarder; x < width - boarder; x++)
for (int y = boarder; y < height - boarder; y++) {
// 遍历每个像素
if (depth_cov2.ptr<double>(y)[x] < min_cov || depth_cov2.ptr<double>(y)[x] > max_cov) // 深度已收敛或发散
continue;
// 在极线上搜索 (x,y) 的匹配
Vector2d pt_curr;
Vector2d epipolar_direction;
bool ret = epipolarSearch(
ref,
curr,
T_C_R,
Vector2d(x, y),
depth.ptr<double>(y)[x],
sqrt(depth_cov2.ptr<double>(y)[x]),
pt_curr,
epipolar_direction
);
if (ret == false) // 匹配失败
continue;
// 取消该注释以显示匹配
// showEpipolarMatch(ref, curr, Vector2d(x, y), pt_curr);
// 匹配成功,更新深度图
updateDepthFilter(Vector2d(x, y), pt_curr, T_C_R, epipolar_direction, depth, depth_cov2);
}
return true;
}
// 极线搜索
// 方法见书 12.2 12.3 两节
bool epipolarSearch(
const Mat &ref, const Mat &curr,
const SE3d &T_C_R, const Vector2d &pt_ref,
const double &depth_mu, const double &depth_cov,
Vector2d &pt_curr, Vector2d &epipolar_direction) {
Vector3d f_ref = px2cam(pt_ref);
f_ref.normalize();
Vector3d P_ref = f_ref * depth_mu; // 参考帧的 P 向量
Vector2d px_mean_curr = cam2px(T_C_R * P_ref); // 按深度均值投影的像素
double d_min = depth_mu - 3 * depth_cov, d_max = depth_mu + 3 * depth_cov;
if (d_min < 0.1) d_min = 0.1;
Vector2d px_min_curr = cam2px(T_C_R * (f_ref * d_min)); // 按最小深度投影的像素
Vector2d px_max_curr = cam2px(T_C_R * (f_ref * d_max)); // 按最大深度投影的像素
Vector2d epipolar_line = px_max_curr - px_min_curr; // 极线(线段形式)
epipolar_direction = epipolar_line; // 极线方向
epipolar_direction.normalize();
double half_length = 0.5 * epipolar_line.norm(); // 极线线段的半长度
if (half_length > 100) half_length = 100; // 我们不希望搜索太多东西
// 取消此句注释以显示极线(线段)
// showEpipolarLine( ref, curr, pt_ref, px_min_curr, px_max_curr );
// 在极线上搜索,以深度均值点为中心,左右各取半长度
double best_ncc = -1.0;
Vector2d best_px_curr;
for (double l = -half_length; l <= half_length; l += 0.7) { // l+=sqrt(2)
Vector2d px_curr = px_mean_curr + l * epipolar_direction; // 待匹配点
if (!inside(px_curr))
continue;
// 计算待匹配点与参考帧的 NCC
double ncc = NCC(ref, curr, pt_ref, px_curr);
if (ncc > best_ncc) {
best_ncc = ncc;
best_px_curr = px_curr;
}
}
if (best_ncc < 0.85f) // 只相信 NCC 很高的匹配
return false;
pt_curr = best_px_curr;
return true;
}
double NCC(
const Mat &ref, const Mat &curr,
const Vector2d &pt_ref, const Vector2d &pt_curr) {
// 零均值-归一化互相关
// 先算均值
double mean_ref = 0, mean_curr = 0;
vector<double> values_ref, values_curr; // 参考帧和当前帧的均值
for (int x = -ncc_window_size; x <= ncc_window_size; x++)
for (int y = -ncc_window_size; y <= ncc_window_size; y++) {
double value_ref = double(ref.ptr<uchar>(int(y + pt_ref(1, 0)))[int(x + pt_ref(0, 0))]) / 255.0;
mean_ref += value_ref;
double value_curr = getBilinearInterpolatedValue(curr, pt_curr + Vector2d(x, y));
mean_curr += value_curr;
values_ref.push_back(value_ref);
values_curr.push_back(value_curr);
}
mean_ref /= ncc_area;
mean_curr /= ncc_area;
// 计算 Zero mean NCC
double numerator = 0, demoniator1 = 0, demoniator2 = 0;
for (int i = 0; i < values_ref.size(); i++) {
double n = (values_ref[i] - mean_ref) * (values_curr[i] - mean_curr);
numerator += n;
demoniator1 += (values_ref[i] - mean_ref) * (values_ref[i] - mean_ref);
demoniator2 += (values_curr[i] - mean_curr) * (values_curr[i] - mean_curr);
}
return numerator / sqrt(demoniator1 * demoniator2 + 1e-10); // 防止分母出现零
}
bool updateDepthFilter(
const Vector2d &pt_ref,
const Vector2d &pt_curr,
const SE3d &T_C_R,
const Vector2d &epipolar_direction,
Mat &depth,
Mat &depth_cov2) {
// 不知道这段还有没有人看
// 用三角化计算深度
SE3d T_R_C = T_C_R.inverse();
Vector3d f_ref = px2cam(pt_ref);
f_ref.normalize();
Vector3d f_curr = px2cam(pt_curr);
f_curr.normalize();
// 方程
// d_ref * f_ref = d_cur * ( R_RC * f_cur ) + t_RC
// f2 = R_RC * f_cur
// 转化成下面这个矩阵方程组
// => [ f_ref^T f_ref, -f_ref^T f2 ] [d_ref] [f_ref^T t]
// [ f_2^T f_ref, -f2^T f2 ] [d_cur] = [f2^T t ]
Vector3d t = T_R_C.translation();
Vector3d f2 = T_R_C.so3() * f_curr;
Vector2d b = Vector2d(t.dot(f_ref), t.dot(f2));
Matrix2d A;
A(0, 0) = f_ref.dot(f_ref);
A(0, 1) = -f_ref.dot(f2);
A(1, 0) = -A(0, 1);
A(1, 1) = -f2.dot(f2);
Vector2d ans = A.inverse() * b;
Vector3d xm = ans[0] * f_ref; // ref 侧的结果
Vector3d xn = t + ans[1] * f2; // cur 结果
Vector3d p_esti = (xm + xn) / 2.0; // P的位置,取两者的平均
double depth_estimation = p_esti.norm(); // 深度值
// 计算不确定性(以一个像素为误差)
Vector3d p = f_ref * depth_estimation;
Vector3d a = p - t;
double t_norm = t.norm();
double a_norm = a.norm();
double alpha = acos(f_ref.dot(t) / t_norm);
double beta = acos(-a.dot(t) / (a_norm * t_norm));
Vector3d f_curr_prime = px2cam(pt_curr + epipolar_direction);
f_curr_prime.normalize();
double beta_prime = acos(f_curr_prime.dot(-t) / t_norm);
double gamma = M_PI - alpha - beta_prime;
double p_prime = t_norm * sin(beta_prime) / sin(gamma);
double d_cov = p_prime - depth_estimation;
double d_cov2 = d_cov * d_cov;
// 高斯融合
double mu = depth.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))];
double sigma2 = depth_cov2.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))];
double mu_fuse = (d_cov2 * mu + sigma2 * depth_estimation) / (sigma2 + d_cov2);
double sigma_fuse2 = (sigma2 * d_cov2) / (sigma2 + d_cov2);
depth.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))] = mu_fuse;
depth_cov2.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))] = sigma_fuse2;
return true;
}
// 后面这些太简单我就不注释了(其实是因为懒)
void plotDepth(const Mat &depth_truth, const Mat &depth_estimate) {
imshow("depth_truth", depth_truth * 0.4);
imshow("depth_estimate", depth_estimate * 0.4);
imshow("depth_error", depth_truth - depth_estimate);
waitKey(1);
}
/**
* 向屏幕中输出深度估计图和深度真值图之间的均方根误差
* @param depth_truth 深度图真值
* @param depth_estimate 深度图估计值
*/
void evaluateDepth(
const Mat &depth_truth,
const Mat &depth_estimate)
{
double rmse = 0;
int cnt_depth_data = 0;
for(int y = boarder; y < depth_truth.rows - boarder; y++)
for(int x = boarder; x < depth_truth.cols - boarder; x++){
double error = depth_truth.ptr<double>(y)[x] - depth_estimate.ptr<double>(y)[x];
rmse += error * error;
cnt_depth_data++;
}
rmse = sqrt(rmse / cnt_depth_data);
cout << "深度估计图和深度真值图之间的均方根误差为:" << rmse << "米!" << endl;
}
void showEpipolarMatch(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_curr) {
Mat ref_show, curr_show;
cv::cvtColor(ref, ref_show, CV_GRAY2BGR);
cv::cvtColor(curr, curr_show, CV_GRAY2BGR);
cv::circle(ref_show, cv::Point2f(px_ref(0, 0), px_ref(1, 0)), 5, cv::Scalar(0, 0, 250), 2);
cv::circle(curr_show, cv::Point2f(px_curr(0, 0), px_curr(1, 0)), 5, cv::Scalar(0, 0, 250), 2);
imshow("ref", ref_show);
imshow("curr", curr_show);
waitKey(1);
}
void showEpipolarLine(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_min_curr,
const Vector2d &px_max_curr) {
Mat ref_show, curr_show;
cv::cvtColor(ref, ref_show, CV_GRAY2BGR);
cv::cvtColor(curr, curr_show, CV_GRAY2BGR);
cv::circle(ref_show, cv::Point2f(px_ref(0, 0), px_ref(1, 0)), 5, cv::Scalar(0, 255, 0), 2);
cv::circle(curr_show, cv::Point2f(px_min_curr(0, 0), px_min_curr(1, 0)), 5, cv::Scalar(0, 255, 0), 2);
cv::circle(curr_show, cv::Point2f(px_max_curr(0, 0), px_max_curr(1, 0)), 5, cv::Scalar(0, 255, 0), 2);
cv::line(curr_show, Point2f(px_min_curr(0, 0), px_min_curr(1, 0)), Point2f(px_max_curr(0, 0), px_max_curr(1, 0)),
Scalar(0, 255, 0), 1);
imshow("ref", ref_show);
imshow("curr", curr_show);
waitKey(1);
}
CMakeLists.txt文件内容为,
set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-std=c++11 -march=native -O3")
include_directories("/usr/include/eigen3")
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_DIRECTORIES})
find_package(Sophus REQUIRED)
include_directories(${Sophus_DIRECTORIES})
find_package(fmt)
set(LIBS ${OpenCV_LIBRARIES} ${Sophus_LIBRARIES})
add_executable(main dense_mapping.cpp)
target_link_libraries(main ${LIBS} fmt::fmt)
程序运行结果为,
read total 200 files.
*** loop 1 ***
深度估计图和深度真值图之间的均方根误差为:1.35752米!
*** loop 2 ***
深度估计图和深度真值图之间的均方根误差为:1.19225米!
*** loop 3 ***
深度估计图和深度真值图之间的均方根误差为:1.02735米!
*** loop 4 ***
深度估计图和深度真值图之间的均方根误差为:0.937914米!
*** loop 5 ***
深度估计图和深度真值图之间的均方根误差为:0.674211米!
*** loop 6 ***
深度估计图和深度真值图之间的均方根误差为:0.630013米!
*** loop 7 ***
深度估计图和深度真值图之间的均方根误差为:0.603759米!
*** loop 8 ***
深度估计图和深度真值图之间的均方根误差为:0.591725米!
*** loop 9 ***
深度估计图和深度真值图之间的均方根误差为:0.583338米!
*** loop 10 ***
深度估计图和深度真值图之间的均方根误差为:0.575829米!
*** loop 11 ***
深度估计图和深度真值图之间的均方根误差为:0.570151米!
*** loop 12 ***
深度估计图和深度真值图之间的均方根误差为:0.564941米!
*** loop 13 ***
深度估计图和深度真值图之间的均方根误差为:0.561238米!
*** loop 14 ***
深度估计图和深度真值图之间的均方根误差为:0.557061米!
*** loop 15 ***
深度估计图和深度真值图之间的均方根误差为:0.554082米!
*** loop 16 ***
深度估计图和深度真值图之间的均方根误差为:0.551189米!
*** loop 17 ***
深度估计图和深度真值图之间的均方根误差为:0.549086米!
*** loop 18 ***
深度估计图和深度真值图之间的均方根误差为:0.547147米!
*** loop 19 ***
深度估计图和深度真值图之间的均方根误差为:0.545983米!
*** loop 20 ***
深度估计图和深度真值图之间的均方根误差为:0.545016米!
*** loop 21 ***
深度估计图和深度真值图之间的均方根误差为:0.544195米!
*** loop 22 ***
深度估计图和深度真值图之间的均方根误差为:0.5434米!
*** loop 23 ***
深度估计图和深度真值图之间的均方根误差为:0.542676米!
*** loop 24 ***
深度估计图和深度真值图之间的均方根误差为:0.54198米!
*** loop 25 ***
深度估计图和深度真值图之间的均方根误差为:0.541366米!
*** loop 26 ***
深度估计图和深度真值图之间的均方根误差为:0.540892米!
*** loop 27 ***
深度估计图和深度真值图之间的均方根误差为:0.540514米!
*** loop 28 ***
深度估计图和深度真值图之间的均方根误差为:0.540138米!
*** loop 29 ***
深度估计图和深度真值图之间的均方根误差为:0.539721米!
*** loop 30 ***
深度估计图和深度真值图之间的均方根误差为:0.539133米!
*** loop 31 ***
深度估计图和深度真值图之间的均方根误差为:0.538708米!
*** loop 32 ***
深度估计图和深度真值图之间的均方根误差为:0.538111米!
*** loop 33 ***
深度估计图和深度真值图之间的均方根误差为:0.537762米!
*** loop 34 ***
深度估计图和深度真值图之间的均方根误差为:0.53743米!
*** loop 35 ***
深度估计图和深度真值图之间的均方根误差为:0.536814米!
*** loop 36 ***
深度估计图和深度真值图之间的均方根误差为:0.536432米!
*** loop 37 ***
深度估计图和深度真值图之间的均方根误差为:0.536051米!
*** loop 38 ***
深度估计图和深度真值图之间的均方根误差为:0.535663米!
*** loop 39 ***
深度估计图和深度真值图之间的均方根误差为:0.535175米!
*** loop 40 ***
深度估计图和深度真值图之间的均方根误差为:0.534822米!
*** loop 41 ***
深度估计图和深度真值图之间的均方根误差为:0.534336米!
*** loop 42 ***
深度估计图和深度真值图之间的均方根误差为:0.533915米!
*** loop 43 ***
深度估计图和深度真值图之间的均方根误差为:0.533362米!
*** loop 44 ***
深度估计图和深度真值图之间的均方根误差为:0.532897米!
*** loop 45 ***
深度估计图和深度真值图之间的均方根误差为:0.532432米!
*** loop 46 ***
深度估计图和深度真值图之间的均方根误差为:0.531942米!
*** loop 47 ***
深度估计图和深度真值图之间的均方根误差为:0.531231米!
*** loop 48 ***
深度估计图和深度真值图之间的均方根误差为:0.530775米!
*** loop 49 ***
深度估计图和深度真值图之间的均方根误差为:0.53034米!
*** loop 50 ***
深度估计图和深度真值图之间的均方根误差为:0.529729米!
*** loop 51 ***
深度估计图和深度真值图之间的均方根误差为:0.529396米!
*** loop 52 ***
深度估计图和深度真值图之间的均方根误差为:0.528988米!
*** loop 53 ***
深度估计图和深度真值图之间的均方根误差为:0.528659米!
*** loop 54 ***
深度估计图和深度真值图之间的均方根误差为:0.528417米!
*** loop 55 ***
深度估计图和深度真值图之间的均方根误差为:0.528293米!
*** loop 56 ***
深度估计图和深度真值图之间的均方根误差为:0.528063米!
*** loop 57 ***
深度估计图和深度真值图之间的均方根误差为:0.528007米!
*** loop 58 ***
深度估计图和深度真值图之间的均方根误差为:0.527839米!
*** loop 59 ***
深度估计图和深度真值图之间的均方根误差为:0.527631米!
*** loop 60 ***
深度估计图和深度真值图之间的均方根误差为:0.527462米!
*** loop 61 ***
深度估计图和深度真值图之间的均方根误差为:0.527323米!
*** loop 62 ***
深度估计图和深度真值图之间的均方根误差为:0.52716米!
*** loop 63 ***
深度估计图和深度真值图之间的均方根误差为:0.526912米!
*** loop 64 ***
深度估计图和深度真值图之间的均方根误差为:0.526764米!
*** loop 65 ***
深度估计图和深度真值图之间的均方根误差为:0.526588米!
*** loop 66 ***
深度估计图和深度真值图之间的均方根误差为:0.526494米!
*** loop 67 ***
深度估计图和深度真值图之间的均方根误差为:0.52631米!
*** loop 68 ***
深度估计图和深度真值图之间的均方根误差为:0.526171米!
*** loop 69 ***
深度估计图和深度真值图之间的均方根误差为:0.526037米!
*** loop 70 ***
深度估计图和深度真值图之间的均方根误差为:0.525873米!
*** loop 71 ***
深度估计图和深度真值图之间的均方根误差为:0.525728米!
*** loop 72 ***
深度估计图和深度真值图之间的均方根误差为:0.525578米!
*** loop 73 ***
深度估计图和深度真值图之间的均方根误差为:0.525371米!
*** loop 74 ***
深度估计图和深度真值图之间的均方根误差为:0.525226米!
*** loop 75 ***
深度估计图和深度真值图之间的均方根误差为:0.525093米!
*** loop 76 ***
深度估计图和深度真值图之间的均方根误差为:0.524924米!
*** loop 77 ***
深度估计图和深度真值图之间的均方根误差为:0.524764米!
*** loop 78 ***
深度估计图和深度真值图之间的均方根误差为:0.524624米!
*** loop 79 ***
深度估计图和深度真值图之间的均方根误差为:0.524487米!
*** loop 80 ***
深度估计图和深度真值图之间的均方根误差为:0.524392米!
*** loop 81 ***
深度估计图和深度真值图之间的均方根误差为:0.524308米!
*** loop 82 ***
深度估计图和深度真值图之间的均方根误差为:0.524115米!
*** loop 83 ***
深度估计图和深度真值图之间的均方根误差为:0.523944米!
*** loop 84 ***
深度估计图和深度真值图之间的均方根误差为:0.52373米!
*** loop 85 ***
深度估计图和深度真值图之间的均方根误差为:0.523455米!
*** loop 86 ***
深度估计图和深度真值图之间的均方根误差为:0.52315米!
*** loop 87 ***
深度估计图和深度真值图之间的均方根误差为:0.522543米!
*** loop 88 ***
深度估计图和深度真值图之间的均方根误差为:0.521579米!
*** loop 89 ***
深度估计图和深度真值图之间的均方根误差为:0.520613米!
*** loop 90 ***
深度估计图和深度真值图之间的均方根误差为:0.519782米!
*** loop 91 ***
深度估计图和深度真值图之间的均方根误差为:0.518495米!
*** loop 92 ***
深度估计图和深度真值图之间的均方根误差为:0.518038米!
*** loop 93 ***
深度估计图和深度真值图之间的均方根误差为:0.517217米!
*** loop 94 ***
深度估计图和深度真值图之间的均方根误差为:0.516438米!
*** loop 95 ***
深度估计图和深度真值图之间的均方根误差为:0.515655米!
*** loop 96 ***
深度估计图和深度真值图之间的均方根误差为:0.514897米!
*** loop 97 ***
深度估计图和深度真值图之间的均方根误差为:0.514478米!
*** loop 98 ***
深度估计图和深度真值图之间的均方根误差为:0.513979米!
*** loop 99 ***
深度估计图和深度真值图之间的均方根误差为:0.513558米!
*** loop 100 ***
深度估计图和深度真值图之间的均方根误差为:0.513126米!
*** loop 101 ***
深度估计图和深度真值图之间的均方根误差为:0.512669米!
*** loop 102 ***
深度估计图和深度真值图之间的均方根误差为:0.512351米!
*** loop 103 ***
深度估计图和深度真值图之间的均方根误差为:0.511821米!
*** loop 104 ***
深度估计图和深度真值图之间的均方根误差为:0.511339米!
*** loop 105 ***
深度估计图和深度真值图之间的均方根误差为:0.511061米!
*** loop 106 ***
深度估计图和深度真值图之间的均方根误差为:0.510834米!
*** loop 107 ***
深度估计图和深度真值图之间的均方根误差为:0.510656米!
*** loop 108 ***
深度估计图和深度真值图之间的均方根误差为:0.510535米!
*** loop 109 ***
深度估计图和深度真值图之间的均方根误差为:0.510396米!
*** loop 110 ***
深度估计图和深度真值图之间的均方根误差为:0.510186米!
*** loop 111 ***
深度估计图和深度真值图之间的均方根误差为:0.510066米!
*** loop 112 ***
深度估计图和深度真值图之间的均方根误差为:0.509987米!
*** loop 113 ***
深度估计图和深度真值图之间的均方根误差为:0.509756米!
*** loop 114 ***
深度估计图和深度真值图之间的均方根误差为:0.509733米!
*** loop 115 ***
深度估计图和深度真值图之间的均方根误差为:0.509674米!
*** loop 116 ***
深度估计图和深度真值图之间的均方根误差为:0.509639米!
*** loop 117 ***
深度估计图和深度真值图之间的均方根误差为:0.509229米!
*** loop 118 ***
深度估计图和深度真值图之间的均方根误差为:0.509096米!
*** loop 119 ***
深度估计图和深度真值图之间的均方根误差为:0.50897米!
*** loop 120 ***
深度估计图和深度真值图之间的均方根误差为:0.508936米!
*** loop 121 ***
深度估计图和深度真值图之间的均方根误差为:0.508311米!
*** loop 122 ***
深度估计图和深度真值图之间的均方根误差为:0.508166米!
*** loop 123 ***
深度估计图和深度真值图之间的均方根误差为:0.508066米!
*** loop 124 ***
深度估计图和深度真值图之间的均方根误差为:0.508053米!
*** loop 125 ***
深度估计图和深度真值图之间的均方根误差为:0.508031米!
*** loop 126 ***
深度估计图和深度真值图之间的均方根误差为:0.508032米!
*** loop 127 ***
深度估计图和深度真值图之间的均方根误差为:0.508012米!
*** loop 128 ***
深度估计图和深度真值图之间的均方根误差为:0.507986米!
*** loop 129 ***
深度估计图和深度真值图之间的均方根误差为:0.507988米!
*** loop 130 ***
深度估计图和深度真值图之间的均方根误差为:0.507926米!
*** loop 131 ***
深度估计图和深度真值图之间的均方根误差为:0.507919米!
*** loop 132 ***
深度估计图和深度真值图之间的均方根误差为:0.507908米!
*** loop 133 ***
深度估计图和深度真值图之间的均方根误差为:0.507866米!
*** loop 134 ***
深度估计图和深度真值图之间的均方根误差为:0.507854米!
*** loop 135 ***
深度估计图和深度真值图之间的均方根误差为:0.507834米!
*** loop 136 ***
深度估计图和深度真值图之间的均方根误差为:0.507783米!
*** loop 137 ***
深度估计图和深度真值图之间的均方根误差为:0.507752米!
*** loop 138 ***
深度估计图和深度真值图之间的均方根误差为:0.507717米!
*** loop 139 ***
深度估计图和深度真值图之间的均方根误差为:0.507685米!
*** loop 140 ***
深度估计图和深度真值图之间的均方根误差为:0.507635米!
*** loop 141 ***
深度估计图和深度真值图之间的均方根误差为:0.507601米!
*** loop 142 ***
深度估计图和深度真值图之间的均方根误差为:0.507565米!
*** loop 143 ***
深度估计图和深度真值图之间的均方根误差为:0.50755米!
*** loop 144 ***
深度估计图和深度真值图之间的均方根误差为:0.507502米!
*** loop 145 ***
深度估计图和深度真值图之间的均方根误差为:0.507477米!
*** loop 146 ***
深度估计图和深度真值图之间的均方根误差为:0.507465米!
*** loop 147 ***
深度估计图和深度真值图之间的均方根误差为:0.507461米!
*** loop 148 ***
深度估计图和深度真值图之间的均方根误差为:0.507424米!
*** loop 149 ***
深度估计图和深度真值图之间的均方根误差为:0.507415米!
*** loop 150 ***
深度估计图和深度真值图之间的均方根误差为:0.507406米!
*** loop 151 ***
深度估计图和深度真值图之间的均方根误差为:0.507405米!
*** loop 152 ***
深度估计图和深度真值图之间的均方根误差为:0.507401米!
*** loop 153 ***
深度估计图和深度真值图之间的均方根误差为:0.5074米!
*** loop 154 ***
深度估计图和深度真值图之间的均方根误差为:0.507355米!
*** loop 155 ***
深度估计图和深度真值图之间的均方根误差为:0.5073米!
*** loop 156 ***
深度估计图和深度真值图之间的均方根误差为:0.50727米!
*** loop 157 ***
深度估计图和深度真值图之间的均方根误差为:0.507231米!
*** loop 158 ***
深度估计图和深度真值图之间的均方根误差为:0.507094米!
*** loop 159 ***
深度估计图和深度真值图之间的均方根误差为:0.507018米!
*** loop 160 ***
深度估计图和深度真值图之间的均方根误差为:0.506917米!
*** loop 161 ***
深度估计图和深度真值图之间的均方根误差为:0.506841米!
*** loop 162 ***
深度估计图和深度真值图之间的均方根误差为:0.506743米!
*** loop 163 ***
深度估计图和深度真值图之间的均方根误差为:0.506689米!
*** loop 164 ***
深度估计图和深度真值图之间的均方根误差为:0.50665米!
*** loop 165 ***
深度估计图和深度真值图之间的均方根误差为:0.506615米!
*** loop 166 ***
深度估计图和深度真值图之间的均方根误差为:0.506541米!
*** loop 167 ***
深度估计图和深度真值图之间的均方根误差为:0.506507米!
*** loop 168 ***
深度估计图和深度真值图之间的均方根误差为:0.506512米!
*** loop 169 ***
深度估计图和深度真值图之间的均方根误差为:0.506476米!
*** loop 170 ***
深度估计图和深度真值图之间的均方根误差为:0.506492米!
*** loop 171 ***
深度估计图和深度真值图之间的均方根误差为:0.506468米!
*** loop 172 ***
深度估计图和深度真值图之间的均方根误差为:0.50647米!
*** loop 173 ***
深度估计图和深度真值图之间的均方根误差为:0.506439米!
*** loop 174 ***
深度估计图和深度真值图之间的均方根误差为:0.506371米!
*** loop 175 ***
深度估计图和深度真值图之间的均方根误差为:0.506373米!
*** loop 176 ***
深度估计图和深度真值图之间的均方根误差为:0.506363米!
*** loop 177 ***
深度估计图和深度真值图之间的均方根误差为:0.506348米!
*** loop 178 ***
深度估计图和深度真值图之间的均方根误差为:0.506333米!
*** loop 179 ***
深度估计图和深度真值图之间的均方根误差为:0.506327米!
*** loop 180 ***
深度估计图和深度真值图之间的均方根误差为:0.506308米!
*** loop 181 ***
深度估计图和深度真值图之间的均方根误差为:0.506311米!
*** loop 182 ***
深度估计图和深度真值图之间的均方根误差为:0.506306米!
*** loop 183 ***
深度估计图和深度真值图之间的均方根误差为:0.506289米!
*** loop 184 ***
深度估计图和深度真值图之间的均方根误差为:0.506287米!
*** loop 185 ***
深度估计图和深度真值图之间的均方根误差为:0.506274米!
*** loop 186 ***
深度估计图和深度真值图之间的均方根误差为:0.506263米!
*** loop 187 ***
深度估计图和深度真值图之间的均方根误差为:0.506269米!
*** loop 188 ***
深度估计图和深度真值图之间的均方根误差为:0.506267米!
*** loop 189 ***
深度估计图和深度真值图之间的均方根误差为:0.506277米!
*** loop 190 ***
深度估计图和深度真值图之间的均方根误差为:0.506269米!
*** loop 191 ***
深度估计图和深度真值图之间的均方根误差为:0.506279米!
*** loop 192 ***
深度估计图和深度真值图之间的均方根误差为:0.506288米!
*** loop 193 ***
深度估计图和深度真值图之间的均方根误差为:0.506286米!
*** loop 194 ***
深度估计图和深度真值图之间的均方根误差为:0.506286米!
*** loop 195 ***
深度估计图和深度真值图之间的均方根误差为:0.506289米!
*** loop 196 ***
深度估计图和深度真值图之间的均方根误差为:0.506291米!
*** loop 197 ***
深度估计图和深度真值图之间的均方根误差为:0.506288米!
*** loop 198 ***
深度估计图和深度真值图之间的均方根误差为:0.50628米!
*** loop 199 ***
深度估计图和深度真值图之间的均方根误差为:0.506286米!
estimation returns, saving depth map ...
done.
执行程序耗时22.083分钟!
注其中updateDepthFilter()
函数中的公式推导见我的上一篇博客。由程序输出结果可知,最终的深度估计图和深度真值图之间的均方根误差为0.506286米。第1张彩色图像的深度真值图和最终的深度估计图如下,
2 点云地图
给定5张彩色图和其对应的深度图信息,求这5张图的点云地图。
cpp文件内容为,
#include <iostream>
#include <fstream>
using namespace std;
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <Eigen/Geometry>
#include <boost/format.hpp> //for formating strings
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/statistical_outlier_removal.h>
int main()
{
vector<cv::Mat> colorImgs, depthImgs; //彩色图和深度图
vector<Eigen::Isometry3d> poses;
ifstream fin("../data/pose.txt");
if(!fin)
{
cerr << "不能打开文件pose.txt!" << endl;
return 1;
}
for(int i = 0; i < 5; i++)
{
boost::format fmt("../data/%s/%d.%s"); //图像路径格式
colorImgs.push_back(cv::imread((fmt % "color" % (i+1) % "png").str()));
depthImgs.push_back(cv::imread((fmt % "depth" % (i+1) % "png").str(), -1)); //-1表示返回原图
double data[7];
for(auto &d : data) fin >> d;
Eigen::Quaterniond q(data[6], data[3], data[4], data[5]);
Eigen::Isometry3d T(q);
T.pretranslate(Eigen::Vector3d(data[0], data[1], data[2]));
poses.push_back(T);
}
//计算点云并拼接
//相机内参
double cx = 319.5, cy = 239.5, fx = 481.2, fy = -480.0;
double depthScale = 5000.0;
cout << "正在将图像转换为点云..." << endl;
//点云定义使用的格式:这里用的是XYZRGB
typedef pcl::PointXYZRGB PointT;
typedef pcl::PointCloud<PointT> PointCloud;
//新建一个点云
PointCloud::Ptr pointCloud(new PointCloud); //创建了一个点云pointCloud
for(int i = 0; i < 5; i++)
{
PointCloud::Ptr current(new PointCloud); //创建了一个点云current
cout << "转换图像" << i+1 << "中..." << endl;
cv::Mat color = colorImgs[i];
cv::Mat depth = depthImgs[i];
Eigen::Isometry3d T = poses[i]; //获得当前时刻的位姿
for(int v = 0; v < color.rows; v++)
for(int u = 0; u < color.cols; u++){
unsigned int d = depth.ptr<unsigned short>(v)[u]; //深度值
if(d == 0) continue; //为0表示没有测量到!
Eigen::Vector3d point;
point[2] = double(d) / depthScale;
point[0] = (u - cx) / fx * point[2];
point[1] = (v - cy) / fy * point[2];
Eigen::Vector3d pointWorld = T * point;
PointT p;
p.x = pointWorld[0];
p.y = pointWorld[1];
p.z = pointWorld[2];
p.b = color.data[v * color.step + u * color.channels()];
p.g = color.data[v * color.step + u * color.channels() + 1];
p.r = color.data[v * color.step + u * color.channels() + 2];
current->points.push_back(p); //将点存入点云current中
}
//利用统计滤波器去除孤立点
PointCloud::Ptr tmp(new PointCloud);
pcl::StatisticalOutlierRemoval<PointT> statistical_filter;
statistical_filter.setMeanK(50);
statistical_filter.setStddevMulThresh(1.0);
statistical_filter.setInputCloud(current);
statistical_filter.filter(*tmp);
(*pointCloud) += *tmp;
}
pointCloud->is_dense = false;
cout << "点云中点的数目为" << pointCloud->size() << "个!" << endl;
//利用体素网络滤波器进行降采样
pcl::VoxelGrid<PointT> voxel_filter;
double resolution = 0.03;
voxel_filter.setLeafSize(resolution, resolution, resolution); //每个0.03*0.03*0.03的格子里只存放一个点
PointCloud::Ptr tmp(new PointCloud);
voxel_filter.setInputCloud(pointCloud);
voxel_filter.filter(*tmp);
tmp->swap(*pointCloud);
cout << "经体素网络滤波之后,点云中点的数目为" << pointCloud->size() << "个!" << endl;
pcl::io::savePCDFileBinary("map.pcd", *pointCloud);
return 0;
}
CMakeLists.txt内容为,
cmake_minimum_required(VERSION 2.10)
set(CMAKE_BUILD_TYPE Release)
set(CMAKE_CXX_FLAGS "-std=c++14 -O3")
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_DIRECTORIES})
include_directories("/usr/include/eigen3")
find_package(PCL REQUIRED)
include_directories(${PCL_DIRECTORIES})
set(LIBS ${OpenCV_LIBRARIES} ${PCL_LIBRARIES})
add_executable(main main.cpp)
target_link_libraries(main ${LIBS})
程序运行结果为,
正在将图像转换为点云...
转换图像1中...
转换图像2中...
转换图像3中...
转换图像4中...
转换图像5中...
点云中点的数目为1309800个!
经体素网络滤波之后,点云中点的数目为31876个!
生成map.pcd
点云地图文件,利用pcl_viewer
打开如下图,
演示视频见点云地图展示。
3 从点云重建网格
利用2中已经建立好的点云地图map.pcd
重建网格地图,先计算点云的法线,再从法线计算网格。
cpp文件内容为,
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/surface/surfel_smoothing.h>
#include <pcl/surface/mls.h>
#include <pcl/surface/gp3.h>
#include <pcl/surface/impl/mls.hpp>
#include <iostream>
using namespace std;
typedef pcl::PointXYZRGB PointT;
typedef pcl::PointCloud<PointT> PointCloud;
typedef pcl::PointCloud<PointT>::Ptr PointCloudPtr;
typedef pcl::PointXYZRGBNormal SurfelT;
typedef pcl::PointCloud<SurfelT> SurfelCloud;
typedef pcl::PointCloud<SurfelT>::Ptr SurfelCloudPtr;
SurfelCloudPtr reconstructSurface(
const PointCloudPtr &input, float radius, int polynomial_order)
{
pcl::MovingLeastSquares<PointT, SurfelT> mls;
pcl::search::KdTree<PointT>::Ptr tree(new pcl::search::KdTree<PointT>);
mls.setSearchMethod(tree);
mls.setSearchRadius(radius);
mls.setComputeNormals(true);
mls.setSqrGaussParam(radius * radius);
mls.setPolynomialFit(polynomial_order > 1);
mls.setPolynomialOrder(polynomial_order);
mls.setInputCloud(input);
SurfelCloudPtr output(new SurfelCloud);
mls.process(*output);
return (output);
}
pcl::PolygonMeshPtr triangulateMesh(const SurfelCloudPtr &surfels)
{
//创建一个搜索树
pcl::search::KdTree<SurfelT>::Ptr tree(new pcl::search::KdTree<SurfelT>);
tree->setInputCloud(surfels);
//初始化对象
pcl::GreedyProjectionTriangulation<SurfelT> gp3;
pcl::PolygonMeshPtr triangles(new pcl::PolygonMesh);
//Set the maximum distance between connected points (maximum edge length)
gp3.setSearchRadius(0.05);
//Set typical values for the parameters
gp3.setMu(2.5);
gp3.setMaximumNearestNeighbors(100);
gp3.setMaximumSurfaceAngle(M_PI / 4); //45 degrees
gp3.setMinimumAngle(M_PI / 18); //10 degrees
gp3.setMaximumAngle(2 * M_PI / 3); //120 degrees
gp3.setNormalConsistency(true);
//Get result
gp3.setInputCloud(surfels);
gp3.setSearchMethod(tree);
gp3.reconstruct(*triangles);
return triangles;
}
int main()
{
//load the points
PointCloudPtr cloud(new PointCloud);
string path = "../map.pcd";
if(pcl::io::loadPCDFile(path, *cloud))
{
cout << "未能加载点云!" << endl;
return 1;
}
cout << "已加载点云,总共有" << cloud->points.size() << "个点!" << endl;
//compute surface elements
cout << "计算法线..." << endl;
double mls_radius = 0.05, polynomial_order = 2;
auto surfels = reconstructSurface(cloud, mls_radius, polynomial_order);
//Compute a greedy surface triangulation
cout << "computing mesh..." << endl;
pcl::PolygonMeshPtr mesh = triangulateMesh(surfels);
cout << "display mesh..." << endl;
pcl::visualization::PCLVisualizer vis;
vis.addPolylineFromPolygonMesh(*mesh, "mesh frame");
vis.addPolygonMesh(*mesh, "mesh");
vis.resetCamera();
vis.spin();
return 0;
}
CMakeLists.txt文件内容为,
cmake_minimum_required(VERSION 2.10)
set(CMAKE_BUILD_TYPE Release)
set(CMAKE_CXX_FLAGS "-std=c++14 -O3")
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_DIRECTORIES})
find_package(PCL REQUIRED)
include_directories(${PCL_DIRECTORIES})
add_executable(main main.cpp)
target_link_libraries(main ${OpenCV_LIBRARIES} ${PCL_LIBRARIES})
程序运行结果为,
已加载点云,总共有31876个点!
计算法线...
computing mesh...
display mesh...
显示的网格图如下,
展示视频见网格地图。
4 八叉树地图
给定5张彩色图和相应的深度图,同时知道它们的位姿真值,求其八叉树地图。
cpp文件内容为,
#include <iostream>
#include <fstream>
using namespace std;
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <octomap/octomap.h>
#include <Eigen/Geometry>
#include <boost/format.hpp>
int main()
{
vector<cv::Mat> colorImgs, depthImgs; //彩色图和深度图
vector<Eigen::Isometry3d> poses; //相机位姿
ifstream fin("../data/pose.txt");
if(!fin)
{
cerr << "不能找到位姿文件!" << endl;
return 1;
}
for(int i = 0; i < 5; i++)
{
boost::format fmt("../data/%s/%d.%s"); //图像路径格式
colorImgs.push_back(cv::imread((fmt % "color" % (i+1) % "png").str()));
depthImgs.push_back(cv::imread((fmt % "depth" % (i+1) % "png").str(), -1)); //-1表示返回原图
double data[7] = {0};
for(auto &d : data) fin >> d;
Eigen::Quaterniond q(data[6], data[3], data[4], data[5]);
Eigen::Isometry3d T(q);
T.pretranslate(Eigen::Vector3d(data[0], data[1], data[2]));
poses.push_back(T);
}
//计算点云拼接
//相机内参
double cx = 319.5, cy = 239.5, fx = 481.2, fy = -480.0;
double depthScale = 5000.0;
cout << "正在将图像转换为Octomap..." << endl;
//octomap tree
octomap::OcTree tree(0.01); //参数为分辨率
for(int i = 0; i < 5; i++)
{
cout << "转换图像" << i+1 << "中..." << endl;
cv::Mat color = colorImgs[i];
cv::Mat depth = depthImgs[i];
Eigen::Isometry3d T = poses[i];
octomap::Pointcloud cloud; //the point cloud in octomap
for(int v = 0; v < color.rows; v++)
for(int u = 0; u < color.cols; u++)
{
unsigned int d = depth.ptr<unsigned short>(v)[u]; //深度值
if(d == 0) continue; //为0表示没有测量到!
Eigen::Vector3d point;
point[2] = double(d) / depthScale;
point[0] = (u - cx) * point[2] / fx;
point[1] = (v - cy) * point[2] / fy;
Eigen::Vector3d pointWorld = T * point;
//将世界坐标系的点放入点云
cloud.push_back(pointWorld[0], pointWorld[1], pointWorld[2]);
}
//将点云存入八叉树地图,给定原点,这样就可以计算投射线
tree.insertPointCloud(cloud, octomap::point3d(T(0,3), T(1,3), T(2,3)));
}
//更新中间节点的占据信息并写入磁盘
tree.updateInnerOccupancy();
cout << "saving octomap..." << endl;
tree.writeBinary("octomap.bt");
return 0;
}
CMakeLists.txt文件内容为,
cmake_minimum_required(VERSION 2.10)
set(CMAKE_BUILD_TYPE Release)
set(CMAKE_CXX_FLAGS "-std=c++14 -O3")
include_directories("/usr/include/eigen3")
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_DIRECTORIES})
find_package(PCL REQUIRED)
include_directories(${PCL_DIRECTORIES})
find_package(octomap REQUIRED)
include_directories(${OCTOMAP_DIRECTORIES})
set(LIBS ${OpenCV_LIBRARIES} ${PCL_LIBRARIES} ${OCTOMAP_LIBRARIES})
add_executable(main main.cpp)
target_link_libraries(main ${LIBS})
程序执行结果为,
正在将图像转换为Octomap...
转换图像1中...
转换图像2中...
转换图像3中...
转换图像4中...
转换图像5中...
saving octomap...
Writing 1136665 nodes to output stream... done.
生成八叉树地图文件octomap.bt
,利用octovis
打开如下,
演示视频见八叉树地图展示。