利用Hamilton-Cayley 定理简化高次多项式矩阵的计算

Hamilton-Cayley 定理是线性代数中一个重要的工具,它为矩阵的多项式简化提供了一个有效的途径。该定理表明,每一个 n×n 矩阵 A 都满足它的特征多项式,即:

p_A(A) = 0

其中,特征多项式 p_A(\lambda) 是矩阵 A 的特征多项式,它的形式为:

p_A(\lambda) = \det(A - \lambda I) = \lambda^n + c_{n-1} \lambda^{n-1} + \cdots + c_1 \lambda + c_0

Hamilton-Cayley 定理的作用:如果我们有一个矩阵 A,那么可以通过使用它的特征多项式将高次幂的矩阵 A^k 通过低次幂的矩阵线性组合来表示,这样可以大大简化矩阵多项式的计算。

利用 Hamilton-Cayley 定理简化矩阵多项式计算的步骤

  1. 找到矩阵 A 的特征多项式:通过计算 \det(A - \lambda I) 得到矩阵的特征多项式 p_A(\lambda)

  2. 将矩阵代入特征多项式:根据 Hamilton-Cayley 定理,矩阵 A 满足它的特征多项式,所以 p_A(A) = 0

  3. 用特征多项式消去高次幂项:如果有一个多项式 f(A) 包含高次幂的 A^k,可以利用 p_A(A) = 0 来消去其中的高次幂项,将高次幂 A^k 表示为 A^{n-1}, A^{n-2}, \dots, A 的线性组合。

例子

设矩阵 A 为:

A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}

我们想要计算矩阵的多项式 A^5 或f(A) = 3A^5 + 2A^4 + A^3

步骤 1: 计算特征多项式

矩阵 A 的特征多项式为:

p_A(\lambda) = \det(A - \lambda I) = \det\begin{pmatrix} 1 - \lambda & 2 \\ 0 & 1 - \lambda \end{pmatrix} = (1 - \lambda)^2

所以,特征多项式为:

p_A(\lambda) = \lambda^2 - 2\lambda + 1

根据 Hamilton-Cayley 定理,矩阵 A 满足:

A^2 - 2A + I = 0

即:

A^2 = 2A - I

步骤 2: 利用特征多项式消去高次幂项

现在我们来计算 A^3A^4A^5

  1. 计算 A^3: 利用 A^2 = 2A - I,我们可以计算 A^3

    A^3 = A \cdot A^2 = A(2A - I) = 2A^2 - A = 2(2A - I) - A = 4A - 2I - A = 3A - 2I
  2. 计算 A^4

    A^4 = A \cdot A^3 = A(3A - 2I) = 3A^2 - 2A = 3(2A - I) - 2A = 6A - 3I - 2A = 4A - 3I
  3. 计算 A^5

    A^5 = A \cdot A^4 = A(4A - 3I) = 4A^2 - 3A = 4(2A - I) - 3A = 8A - 4I - 3A = 5A - 4I
步骤 3: 计算多项式 f(A)

现在我们计算 f(A) = 3A^5 + 2A^4 + A^3

f(A) = 3(5A - 4I) + 2(4A - 3I) + (3A - 2I)

展开得到:

f(A) = 15A - 12I + 8A - 6I + 3A - 2I = (15A + 8A + 3A) - (12I + 6I + 2I) = 26A - 20I

因此,矩阵多项式 f(A) 简化为:

f(A) = 26A - 20I

总结

通过 Hamilton-Cayley 定理,我们可以通过矩阵的特征多项式将高次幂矩阵 A^k 归约为低次幂的 A 和常数项的组合。这样就能大大简化复杂矩阵多项式的计算过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值