Hamilton-Cayley 定理是线性代数中一个重要的工具,它为矩阵的多项式简化提供了一个有效的途径。该定理表明,每一个 n×n 矩阵 A 都满足它的特征多项式,即:
其中,特征多项式 是矩阵 A 的特征多项式,它的形式为:
Hamilton-Cayley 定理的作用:如果我们有一个矩阵 A,那么可以通过使用它的特征多项式将高次幂的矩阵 通过低次幂的矩阵线性组合来表示,这样可以大大简化矩阵多项式的计算。
利用 Hamilton-Cayley 定理简化矩阵多项式计算的步骤
-
找到矩阵 A 的特征多项式:通过计算
得到矩阵的特征多项式
。
-
将矩阵代入特征多项式:根据 Hamilton-Cayley 定理,矩阵 A 满足它的特征多项式,所以
。
-
用特征多项式消去高次幂项:如果有一个多项式 f(A) 包含高次幂的
,可以利用
来消去其中的高次幂项,将高次幂
表示为
的线性组合。
例子
设矩阵 A 为:
我们想要计算矩阵的多项式 或
。
步骤 1: 计算特征多项式
矩阵 A 的特征多项式为:
所以,特征多项式为:
根据 Hamilton-Cayley 定理,矩阵 A 满足:
即:
步骤 2: 利用特征多项式消去高次幂项
现在我们来计算 、
、
:
-
计算
: 利用
,我们可以计算
:
-
计算
:
-
计算
:
步骤 3: 计算多项式 f(A)
现在我们计算 :
展开得到:
因此,矩阵多项式 f(A) 简化为:
总结
通过 Hamilton-Cayley 定理,我们可以通过矩阵的特征多项式将高次幂矩阵 归约为低次幂的 A 和常数项的组合。这样就能大大简化复杂矩阵多项式的计算过程。