【Hierarchical Coverage Path Planning in Complex 3D Environments】

文章介绍了一种在复杂三维环境中进行分层覆盖路径规划的方法,通过高层算法划分子空间并应用全局TSP,同时使用视点采样策略,确保每个子空间详细覆盖。算法涉及八叉树地图划分、视点选择和TSP求解器来确定最优路径顺序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hierarchical Coverage Path Planning in Complex 3D Environments 复杂三维环境下的分层覆盖路径规划


算法分两层,一层高级一层低级:
高层算法将环境分离多个子空间,如果给定体积中有大量的结构,则空间会进一步细分。全局TSP问题;低层算法采用简单的采样路径规划,解决每一个子空间的详细覆盖扫描问题。

视点采样

选择视点,并在各个子空间中计算详细的覆盖路径以形成路径。一个视点信息包含 位置信息x,y,z,和三维旋转角pitch,roll,yaw :[x,y,z,roll,pitch,yaw];roll = 0;

规定视点距离表面的距离D;在八叉树地图中保存视点,对空间进行划分。如果一个空间中的视点个数大于一定数量,这个空间将被细分为8个子空间。
在这里插入图片描述

全局TSP

将视点放入八叉树地图中,根据以上的视点个数原则对八叉树进行划分,获得子空间;用TSP求解器确定子空间的访问顺序;再遍历每一个子空间,用TSP求解器求出子空间中视点的最佳访问顺序,作为无人机的初始搜索路径。当计算TSP巡回时,子空间中的开始视点和结束视点分别被选择为最接近前个子空间的结束视点和下个子空间的开始视点。处理的两个步骤对许多K∈Z+迭代重复。然后,来自子空间的最短路径被级联,以在算法2中的行19上形成整个覆盖路径。
在这里插入图片描述
其中,在子空间的遍历中,SelectViewpoints子空间中的视点选取法则根据最小基数选取,考虑视点覆盖区域的大小作为优先级,视点选取的概率与优先级成正比,随机选取(而不是直接选取覆盖区域最大的视点),选取视点完成后,适当减少其他视点的奖励(优先级),直到没有更多的可接受奖励的视点为止。输出的表示子空间全覆盖视点。

在这里插入图片描述

### 如何复现 FUEL Fast UAV Exploration Using Incremental Frontier Structure and Hierarchical Planning 为了成功复现FUEL项目,需理解其核心组成部分:增量前沿信息结构(FIS)和层次化规划。此方法旨在提高无人机在未知环境中的探索效率。 #### 1. 环境搭建 首先安装必要的依赖库,包括但不限于ROS(Robot Operating System),PCL(Point Cloud Library),以及用于优化轨迹生成的相关工具包。确保开发平台支持C++编程语言,并配置好编译器与调试环境[^4]。 ```bash sudo apt-get update && sudo apt-get install ros-noetic-desktop-full python3-catkin-tools libpcl-dev source /opt/ros/noetic/setup.bash catkin init ``` #### 2. 数据集准备 获取适用于三维点云处理的数据集,这些数据可以来自公开资源或是通过实际飞行采集而来。对于模拟实验而言,Gazebo或其他物理引擎可提供逼真的场景模型供测试之用。 #### 3. 实现增量前沿信息结构 (FIS) 构建一个高效的数据结构来维护已知区域的地图表示形式,同时动态识别潜在的未访问过的边界区。每当接收到新的传感器输入时,更新现有地图并扩展边界集合。具体来说: - 初始化空的地图网格; - 接收LiDAR扫描结果作为观测值; - 更新占用栅格图; - 提取当前可见范围内的所有候选边界点; - 对新发现的边界应用增量算法进行分类整理[^1]。 ```cpp // Pseudo-code for updating the frontier information structure void updateFrontiers(const sensor_msgs::LaserScan& scan){ // Convert laser data into point cloud format pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); // Update occupancy grid based on new observations map.updateWithObservation(cloud); // Extract frontiers from updated map std::vector<Frontier> detected_frontiers = extractFrontiers(map); } ``` #### 4. 层次化规划策略设计 制定两阶段的任务分配方案——先确定宏观层面的最佳路径框架,再细化至局部动作序列。局搜索应考虑整体连通性和可达性约束条件;而针对特定子目标,则利用快速采样技术寻找最优解。特别注意的是,在最终逼近选定视点之前,还需调整姿态以确保成像质量[^2]。 ```python def hierarchical_planning(start_pose, target_viewpoint): global_path = find_global_coverage_route(start_pose) # Generate coarse-level route local_trajectory = optimize_local_approach(global_path[-1], target_viewpoint) # Fine-tune approach path return concatenate_paths([global_path[:-1], local_trajectory]) ``` #### 5. 轨迹平滑与执行 采用B-spline曲线拟合技术对初步得到的动作指令加以修饰,使其更加流畅自然。此外,考虑到实时性能需求,建议预先计算多个可能的选择分支以便即时切换方向而不影响连续性[^5]。 ```matlab function bspline_control_points = generate_bspline(points) % Fit B-Spline to given waypoints tck = csaps(points(:,1), points(:,2)); % Cubic spline approximation u = linspace(0,1,length(points)); p = ppval(tck,u); % Evaluate fitted curve at sample locations bspline_control_points = [p; ...]; % Store control vertices of resulting BSpline end ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聪明小張

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值