Ubuntu18.04复现OpenPCDet过程(cuda11.3、pytorch1.10)

一、介绍安装环境

(一)安装ubuntu18.04系统

        推荐大家参考下面这篇文章,主要是针对单系统安装,保姆级别的教程,看完后肯定知道怎么做,双系统安装时候在下面选项中的引导项改为分配给Ubuntu的EFI分区即可(注意:选择正确以后再点击安装)

推荐参考文章:

史上最全Ubuntu18.04单系统安装教程_ubuntu18.04安装教程_威士忌燕麦拿铁的博客-CSDN博客1 下载Ubuntu iso镜像下面是Ubuntu 18.04.5LTS桌面版64位的链接,点击链接即可下载,文件大概有2G,所以下载可能需要花一些时间。http://releases.ubuntu.com/18.04.5/ubuntu-18.04.5-desktop-amd64.iso2 下载刻录软件并安装我们需要在Windows系统下面下载刻录软件并完成刻录,这里我用的是ultroiso。下载地址:https://cn.ultraiso.net/xiazai.html直接下载免费试用版本即可,https://blog.csdn.net/whatiscode/article/details/109153474

小编建议大家在安装系统的时候选择English,避免在以后搭建环境时候出现问题。

但是小编在系统分区时没有采用作者推荐的分区,用了另一种方式

其中 start就是 Begining of this space

 这是一种最简单的分区办法,也很实用。

(二)、安装搜狗输入法

        打开浏览器直接进入网址:

                https://shurufa.sogou.com/

        下载搜狗输入法安装包,一定要下载 .deb格式的文件,下载完成后会提示搜狗的安装过程,一步一步安装官网提供的教程即可完成安装。直接点击下边的链接也可直接进入安装指导。

搜狗输入法linux-安装指导搜狗输入法for linux—支持全拼、简拼、模糊音、云输入、皮肤、中英混输icon-default.png?t=N7T8https://shurufa.sogou.com/linux/guide二、OpenPCDet复现过程:

        注意:数据集的布置建议采用小编后边给出的形式,作者的布置方式新手可能不会操作,建立软连接哪一步可以直接忽略,直接按照小编后续给出的布置方式直接布置数据集。

(一)配置环境各个软件版本

         Anaconda3

        cuda——11.3

        cudnn-11.3

        pytorch1.10.1

(二)安装过程

1、查看cuda和NVIDIA驱动的对应关系:CUDA 12.1 Release Notes

2、复现过程

        建议大家先按照 Anaconda ,创建虚拟环境然后进行接下来的环境安装。

创建虚拟环境:
conda create -n pcdet python=3.8
激活创建好的虚拟环境pcdet:
conda activate pcdet

        创建好虚拟环境以后可以避免在配置环境变量的时候安装vim,wegt等,可以直接使用命令。

vim编辑器有三种模式:
        命令模式、编辑模式、末行模式

模式间切换方法:
        (1)命令模式下,输入:后,进入末行模式
        (2)末行模式下,按esc慢退、按两次esc快退、或者删除所有命令,可以回到命令模式
        (3)命令模式下,按下i、a等键,可以计入编辑模式
        (4)编辑模式下,按下esc,可以回到命令模式

注意:vim中常用的保存/退出命令如下

命令功能描述
:wq   保存并退出 Vim 编辑器
:wq!    保存并强制退出 Vim 编辑器
:q    不保存就退出 Vim 编辑器
:q!   不保存,且强制退出 Vim 编辑器
:w    保存但是不退出 Vim 编辑器
:w!   强制保存文本
:w filename   另存到 filename 文件
x!   保存文本,并退出 Vim 编辑器
ZZ    直接退出 Vim 编辑器

3、OpenPCDet复现过程参考

        https://xiaohu.blog.csdn.net/article/details/124515876icon-default.png?t=N7T8https://xiaohu.blog.csdn.net/article/details/124515876

4、安装过程中如果有报错,参考下面的文章可以解决报错。

(1)其中安装cudnn-11.3时,安装过程中可能会报错,大家可以采用以下方法解决

        下载的包(要全部下载):

        cudnn-11.3-linux-x64-v8.2.0.53.tgz

        cudnn runtime library for ubuntu18.04 x86_64(Deb)

        cudnn developer library for ubuntu18.04 x86_64(Deb)

        cudnn code samples and user guide  for ubuntu18.04 x86_64(Deb)

      依次执行一下命令:

tar -zxvf cudnn-11.3-linux-x64-v8.2.0.53.tgz

sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

sudo dpkg -i libcudnn8_8.2.0.53-1+cuda11.3_amd64.deb
sudo dpkg -i libcudnn8-dev_8.2.0.53-1+cuda11.3_amd64.deb
sudo dpkg -i libcudnn8-samples_8.2.0.53-1+cuda11.3_amd64.deb

其他部分还是按照原作者的继续。

(2)数据集

        在作者提供的数据集和数据集的布置方式,小编建议数据体的布置建议采用以下方式(适合刚接触的新手采用):

OpenPCDet
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes) & (optional: depth_2)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── pcdet
├── tools

布置好数据集之后,执行以下命令

cd OpenPCDet

数据预处理:

python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

数据预处理的过程如果报错,检查training和testing文件中的image_2中的文件数量是否与training和testing文件下其他目录中的文件数量相同,如果不同,从另一个image_2中复制一部分补齐道另一个image_2中。再次执行上述的命令。

然后返回参考文章中,继续执行后续的命令。

(3)tensorBoard可视化:

        在执行可视化的命令之前要安装 tensorBoard。

(4)运行demo.py可视化模型在测试集上的推理效果

python demo.py --cfg_file cfgs/kitti_models/pointpillar.yaml  --data_path ../data/kitti/testing/velodyne/000099.bin --ckpt ../output/kitti_models/pointpillar/default/ckpt/checkpoint_epoch_80.pth

     如果出现一下提示: 

RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE when calling `cublasSgemm( handle, opa, opb, m, n, k, &alpha, a, lda, b, ldb, &beta, c, ldc)`

    运行这个命令: 

unset LD_LIBRARY_PATH

     

 注意:在运行这个命令之前要下载一个文件:

链接:https://pan.baidu.com/s/1n-MWItXyK0aJ-ZNmuYHHiA 
提取码:m0ee 


将现在的文件复制到 OpenPCDet/tools 文件夹目录下。

再次运行上述代码即可得到可视化模型在测试集上的推理效果。

引用的内容:

史上最全Ubuntu18.04单系统安装教程_ubuntu18.04安装教程_威士忌燕麦拿铁的博客-CSDN博客

https://xiaohu.blog.csdn.net/article/details/124515876

<think>嗯,用户想配置PointPillars的训练环境,需要知道具体的Python、CUDAPyTorch等版本和安装方法。首先,我应该回忆一下PointPillars这个项目的依赖情况。PointPillars通常是在3D目标检测中使用,可能基于MMDetection3D或者OpenPCDet这样的框架。 根据用户提供的引用,引用[1]提到Python3.6.8、PyTorch1.4.0、CUDA10.0、openCV4.2.0,这可能是某个特定项目的配置,但不确定是否适用于PointPillars。引用[2]涉及Jetson TX2的环境,可能和用户需求不太相关,但里面提到了PyTorch的不同版本,比如1.111.7,还有CUDA、cuDNN的安装。引用[3]是关于PyTorch与其他库的兼容性列表,需要参考这个来确定各版本是否匹配。 首先,我应该确认PointPillars的官方文档或源码库中的要求。例如,OpenPCDet通常推荐PyTorch 1.31.7,CUDA 10.0或10.1。MMDetection3D可能要求更高版本的PyTorch,比如1.6以上。如果用户没有指定具体代码库,可能需要给出通用配置。 常见的配置组合可能是Python 3.6-3.8,PyTorch 1.6-1.7,CUDA 10.2,对应cuDNN 8.0。需要确保torchvision与PyTorch版本匹配,例如PyTorch 1.7对应torchvision 0.8.2。Numpy通常兼容性较好,但需版本不低于某个最小值,比如1.17。OpenCV-python一般4.x版本可用。 安装方法方面,通常用conda创建虚拟环境,安装PyTorchCUDA,然后通过pip安装其他依赖。需要检查各库的版本是否兼容,特别是PyTorch和torchvision,以及CUDA驱动是否支持。比如,CUDA 10.2需要NVIDIA驱动版本>=440.64。 用户可能遇到的问题包括版本冲突、CUDAPyTorch不匹配,或者缺少某些系统库。建议用户参考官方文档,并确保严格按照版本要求安装。如果出现兼容性问题,可能需要调整版本,比如降低PyTorch版本或升级CUDA工具包。 最后,生成相关问题时要覆盖环境配置的常见问题,如版本检查、依赖安装、兼容性处理等,帮助用户进一步解决可能遇到的困难。</think>[用户可见层] ### PointPillars训练环境配置指南 PointPillars是一种基于点云的3D目标检测算法,其训练依赖特定版本的软硬件环境。以下是推荐配置及安装方法: #### 1. **基础环境要求** - **操作系统**: Ubuntu 18.04/20.04 (推荐) - **CUDA**: 10.2/11.3 (需与PyTorch版本匹配)[^3] - **NVIDIA驱动**: ≥450.80.02 (根据CUDA版本调整)[^2] #### 2. **Python及依赖库版本** | 组件 | 推荐版本 | 安装方法 | |----------------|------------------|---------------------------------| | Python | 3.6-3.8 | `conda create -n pointpillars python=3.7` | | PyTorch | 1.7.0/1.9.0 | `conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2` | | Torchvision | 0.8.0/0.10.0 | 随PyTorch一同安装 | | Numpy | ≥1.17 | `pip install numpy==1.19.5` | | OpenCV-python | 4.2.0-4.5.5 | `pip install opencv-python==4.5.5`[^1] | #### 3. **关键安装步骤** 1. **创建虚拟环境**: ```bash conda create -n pointpillars python=3.7 conda activate pointpillars ``` 2. **安装PyTorchCUDA**: - CUDA 10.2 + PyTorch 1.7: ```bash conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch ``` - CUDA 11.3 + PyTorch 1.9: ```bash conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.3 -c pytorch ``` 3. **安装其他依赖**: ```bash pip install numpy==1.19.5 opencv-python==4.5.5 ``` #### 4. **验证环境兼容性** - **检查CUDAPyTorch**: ```python import torch print(torch.__version__) # 应输出1.7.0或1.9.0 print(torch.cuda.is_available()) # 应返回True ``` - **检查OpenCV**: ```python import cv2 print(cv2.__version__) # 应输出4.5.5 ``` #### 5. **注意事项** - 若使用NVIDIA Jetson设备(如TX2),需选择ARM架构兼容的PyTorch版本。 - 安装时优先使用`conda`管理CUDA依赖,避免与系统CUDA冲突。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值