其实呢,求NDVI,对于不同的影像,总体思路就是改改参数
例如:landsat8,红和近红波段分别为4、5;而哨兵系列,红和近红波段分别为4、8;
只需要我们把影像的数据地址、波段、所需的时间、去云函数等进行更改,其他的,使用同一个模版和函数就可以哒(下面代码中,我会把需要更改的地方进行标注!)
结果展示:
landsat5代码:(代码注释的部分的有一点点乱,这也是我自己不断尝试,不断修改报错的结果)
//landsat NDVI Demo
//方法一:普通方式,通过将数学公式翻译为代码直接计算
// function NDVI_V1(img) {
// var nir = img.select("B5");
// var red = img.select("B4");
// var ndvi = nir.subtract(red).divide(nir.add(red));
// return ndvi;
// }
//方法二:将计算公式直接带入,通过解析字符串实现计算。这种方式更加灵活,在某些特殊情况下非常好用,而且非常直观。
// function NDVI_V2(img) {
// var nir = img.select("B5");
// var red = img.select("B4");
// var ndvi = img.expression(
// "(B5 - B4)/(B5 + B4)",
// {
// "B5": nir,
// "B4": red
// }
// );
// return ndvi;
// }
//方法三:GEE将计算公式封装为一个方法可以直接调用
function NDVI_V3(img) {
var ndvi = img.normalizedDifference(["SR_B4","SR_B3"]);
return ndvi;
}
//landsat5 and roi 我们这里使用的2010年全部的Landsat5影像
var l8_col = ee.ImageCollection("LANDSAT/LT05/C02/T1_L2");
// var roi = ee.Geometry.Point([117.0703125,39.09133660751176]);
var roi = ee.Geometry.Polygon(
[[[116.83822631835938, 39.58654768359213],
[116.83822631835938, 38.88024924949176],
[118.77182006835938, 38.88024924949176],
[118.77182006835938, 39.58654768359213]]], null, false);
var img = ee.Image(l8_col.filterBounds(roi)
.filterDate("2010-05-01", "2010-09-24")
.first());
// var ndvi1 = NDVI_V1(img);
// var ndvi2 = NDVI_V2(img);
var ndvi3 = NDVI_V3(img);
//NDVI显示配置,NDVI值范围是-1到1
var visParam = {
min: -0.2,
max: 0.8,
palette: 'FFFFFF, CE7E45, DF923D, F1B555, FCD163, 99B718, 74A901, 66A000, 529400,' +
'3E8601, 207401, 056201, 004C00, 023B01, 012E01, 011D01, 011301'
};
//原始影像真彩色
Map.addLayer(img, {bands:["SR_B3", "SR_B2", "SR_B1"], max:0.3}, "raw_img");
// Map.addLayer(ndvi1, visParam, "ndvi_1");
// Map.addLayer(ndvi2, visParam, "ndvi_2");
Map.addLayer(ndvi3, visParam, "ndvi_3");
Map.centerObject(roi, 7);
//上面只是展示了图像,我们在分析的时候还需要查看我们所筛选的影像NDVI值
var ndvi_list = l8_col.filterDate("2010-05-01", "2010-09-24")
.map(function(image) {
//通过云筛选landsat,也可以在左侧示例中换成其他影像的去云函数
// var cloud = ee.Algorithms.Landsat.simpleCloudScore(image).select("cloud");
// var mask = cloud.lte(20);
var qa = image.select('pixel_qa');
// If the cloud bit (5) is set and the cloud confidence (7) is high
// or the cloud shadow bit is set (3), then it's a bad pixel.
var cloud = qa.bitwiseAnd(1 << 5)
.and(qa.bitwiseAnd(1 << 7))
.or(qa.bitwiseAnd(1 << 3))
//删除所有波段中不出现的边缘像素
var mask = image.mask().reduce(ee.Reducer.min());
// Display the results in a cloudy place.
// Map.setCenter(-6.2622, 53.3473, 12);
// Map.addLayer(composite, {bands: ['B3', 'B2', 'B1'], min: 0, max: 3000});
var ndvi = image.normalizedDifference(['SR_B4', 'SR_B3']).rename('NDVI');
return image.addBands(ndvi).updateMask(mask);
});
// 将函数映射到集合上并取中位数。
// var collection = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2')
// .filterDate('2010-05-01", "2010-09-24')
// var composite = collection
// .map(ndvi_list)
// .median();
哨兵2号代码:
//sentinel2 NDVI Demo
//方法一:普通方式,通过将数学公式翻译为代码直接计算
// function NDVI_V1(img) {
// var nir = img.select("B8");
// var red = img.select("B4");
// var ndvi = nir.subtract(red).divide(nir.add(red));
// return ndvi;
// }
//方法二:将计算公式直接带入,通过解析字符串实现计算。这种方式更加灵活,在某些特殊情况下非常好用,而且非常直观。
// function NDVI_V2(img) {
// var nir = img.select("B8");
// var red = img.select("B4");
// var ndvi = img.expression(
// "(B5 - B4)/(B5 + B4)",
// {
// "B5": nir,
// "B4": red
// }
// );
// return ndvi;
// }
//方法三:GEE将计算公式封装为一个方法可以直接调用
function NDVI_V3(img) {
var ndvi = img.normalizedDifference(["B8","B4"]);
return ndvi;
}
//sentinel2 and roi
var s2_col = ee.ImageCollection("COPERNICUS/S2");
var roi = ee.Geometry.Point([117.0703125,38.09133660751176]);
var img = ee.Image(s2_col.filterBounds(roi)
.filterDate("2018-05-01", "2018-09-24")
.first());
// var ndvi1 = NDVI_V1(img);
// var ndvi2 = NDVI_V2(img);
var ndvi3 = NDVI_V3(img);
var visParam = {
min: -0.2,
max: 0.8,
palette: 'FFFFFF, CE7E45, DF923D, F1B555, FCD163, 99B718, 74A901, 66A000, 529400,' +
'3E8601, 207401, 056201, 004C00, 023B01, 012E01, 011D01, 011301'
};
Map.addLayer(img, {bands:["B8", "B4", "B3"], max:3048}, "raw_img");
// Map.addLayer(ndvi1, visParam, "ndvi_1");
// Map.addLayer(ndvi2, visParam, "ndvi_2");
Map.addLayer(ndvi3, visParam, "ndvi_3");
Map.centerObject(roi, 9);
//show charts
var ndvi_list = s2_col.filterDate("2018-05-01", "2018-09-24")
.map(function(image) {
var ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI');
return image.addBands(ndvi);
});
//展示每一张影像NDVI值
var chart1 = ui.Chart.image.series({
//影像集合
imageCollection: ndvi_list.select('NDVI'),
//关心区域
region: roi,
//关心区域计算方式,这里采用的是均值。也就是比如roi是一个矩形,
//那么在图表中这个点的值就是矩形内所有像素值求平均。
reducer: ee.Reducer.mean(),
//分辨率
scale: 30
}).setOptions({title: 'NDVI IMAGE SERIES'});
print(chart1);
//展示每一天所关心区域的NDVI值
var chart2 = ui.Chart.image.doySeries({
imageCollection: ndvi_list.select('NDVI'),
region:roi,
regionReducer: ee.Reducer.mean(),
scale:30
}).setOptions({title: "ROI NDVI EACH DAY SERIES"})
print(chart2)
原版代码参考来自:
知乎大佬:https://zhuanlan.zhihu.com/p/29620366,讲的很详细哦