💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
毫米波大规模多用户MIMO在链路限制下的研究文档,单天线用户设备(UE)。
大规模多用户MIMO系统中的低复杂度混合预编码研究文档
采用混合预编码方案,其中基带采用零强制(ZF)预编码,模拟域采用相位反转(PR)预编码。
数值比较全复杂度零强制(FC-ZF)、混合预编码、量化混合预编码(QHybrid)和二进制MIMO(B-MIMO)的性能。
1. 引言
毫米波大规模多用户MIMO技术在5G及未来通信网络中扮演着重要角色。然而,在实际应用中,链路限制是一个不可忽视的问题。为了应对这些挑战,研究人员提出了多种预编码技术,包括混合预编码方案,以平衡系统性能和硬件复杂性。
2. 混合预编码技术
混合预编码技术结合了数字域和模拟域的预编码方法,旨在降低硬件复杂度的同时保持较高的系统性能。具体来说,这种技术在基带采用零强制(ZF)预编码,而在模拟域采用相位反转(PR)预编码。
2.1 零强制(ZF)预编码
零强制预编码是一种常见的数字预编码技术,通过消除用户间的干扰来提高系统性能。在多用户MIMO系统中,ZF预编码可以有效地提高频谱效率和传输可靠性。
2.2 相位反转(PR)预编码
相位反转预编码是一种模拟预编码技术,通过调整相位来优化信号传输。在毫米波大规模MIMO系统中,PR预编码可以显著降低硬件复杂度,同时保持较高的系统性能。
3. 性能比较
为了评估混合预编码方案的性能,研究人员通常会将其与全复杂度零强制(FC-ZF)、量化混合预编码(QHybrid)和二进制MIMO(B-MIMO)进行比较。以下是这些技术的简要介绍:
技术名称 | 描述 |
---|---|
全复杂度零强制(FC-ZF) | 一种高复杂度的数字预编码技术,通过完全消除用户间的干扰来提高系统性能。 |
量化混合预编码(QHybrid) | 一种混合预编码技术,通过量化预编码矩阵来降低硬件复杂度。 |
二进制MIMO(B-MIMO) | 一种低复杂度的MIMO技术,通过使用二进制信号来简化硬件设计。 |
4. 结论
研究表明,采用混合预编码方案的毫米波大规模多用户MIMO系统在链路限制下表现出色。通过在基带采用零强制(ZF)预编码和在模拟域采用相位反转(PR)预编码,该方案能够在保持较高系统性能的同时显著降低硬件复杂度。数值比较结果显示,混合预编码方案在性能上接近全复杂度零强制(FC-ZF),但在硬件复杂度方面具有明显优势。
大规模多用户MIMO系统中的低复杂度混合预编码研究
摘要:本文聚焦于大规模多用户MIMO系统,深入研究低复杂度混合预编码方案。该方案在基带采用零强制(ZF)预编码,模拟域采用相位反转(PR)预编码。通过数值分析,详细比较了全复杂度零强制(FC - ZF)、混合预编码、量化混合预编码(QHybrid)和二进制MIMO(B - MIMO)的性能,为实际系统中的预编码方案选择提供理论依据和实践参考。
一、引言
大规模多用户MIMO技术作为提升无线通信系统容量和频谱效率的关键技术,在现代通信领域备受关注。然而,传统的高复杂度预编码方案在硬件实现和功耗方面面临挑战。混合预编码方案作为一种折衷方案,既能降低复杂度,又能保持较好的系统性能。本文详细阐述了所采用的低复杂度混合预编码方案,并对几种不同预编码方案进行性能比较研究。
二、大规模多用户MIMO系统模型
三、预编码方案
(四)二进制MIMO(B - MIMO)
B - MIMO预编码将预编码矩阵的元素限制为 ±1±1 或 ±j±j ,大大简化了硬件实现。其预编码矩阵的设计通常基于优化算法,以在低复杂度下尽量提高系统性能。
四、性能评估指标
为全面比较上述预编码方案的性能,采用以下几个关键指标:
(一)误码率(BER)
反映了接收信号中错误比特的比例,是衡量通信系统可靠性的重要指标。通过仿真计算不同信噪比(SNR)下各预编码方案的BER性能。
(二)频谱效率
定义为单位带宽内能够传输的比特数,衡量系统的信息传输能力。根据香农公式计算不同预编码方案在给定信道条件下的频谱效率。
(三)硬件复杂度
从计算复杂度和硬件实现成本两方面考虑。计算复杂度通过分析各预编码方案所需的乘法、加法等运算次数来衡量;硬件实现成本则考虑模拟和数字电路的复杂度、功耗等因素。
五、数值结果与分析
通过MATLAB仿真,对FC - ZF、混合预编码、QHybrid和B - MIMO四种预编码方案进行性能比较。仿真参数设置如下:基站天线数 N=64N=64 ,用户数 K=16K=16 ,信道模型采用瑞利衰落信道,SNR范围为 00 到 3030 dB。
(一)误码率性能
图1展示了不同预编码方案的BER随SNR的变化曲线。可以看出,FC - ZF预编码在高SNR下BER性能最优,能有效消除用户间干扰。混合预编码性能接近FC - ZF,尤其在中高SNR区域,二者差距较小。这得益于其合理的模拟和数字预编码结合方式。QHybrid由于量化误差,BER性能略逊于混合预编码,且量化比特数越低,性能下降越明显。B - MIMO的BER性能相对较差,在高SNR下与其他方案差距较大,这是由于其严格的二进制元素限制了预编码矩阵的自由度。
(二)频谱效率性能
图2给出了频谱效率随SNR的变化情况。FC - ZF和混合预编码在频谱效率方面表现相近,在高SNR时能达到较高的值,充分利用了多天线系统的空间复用能力。QHybrid的频谱效率随着量化比特数的增加逐渐接近混合预编码,但始终低于混合预编码。B - MIMO的频谱效率相对较低,尤其是在高SNR区域,其性能瓶颈明显。
(三)硬件复杂度分析
在计算复杂度方面,FC - ZF预编码需要计算 (HHH)−1(HHH)−1 ,复杂度为 O(K3)O(K3) 。混合预编码的模拟部分计算复杂度较低,数字部分复杂度为 O(K3)O(K3) ,总体复杂度低于FC - ZF。QHybrid由于量化操作,计算复杂度有所增加,但仍低于FC - ZF。B - MIMO的计算复杂度相对较低,主要是因为其简单的二进制元素操作。在硬件实现成本上,FC - ZF需要大量的数字计算资源;混合预编码需要模拟和数字电路结合;QHybrid由于量化电路,硬件成本有所增加;B - MIMO的硬件实现最为简单,成本最低。
六、结论
本文深入研究了大规模多用户MIMO系统中的低复杂度混合预编码方案,并通过数值仿真比较了FC - ZF、混合预编码、QHybrid和B - MIMO的性能。结果表明,混合预编码在性能和复杂度之间取得了较好的平衡,在BER和频谱效率方面接近FC - ZF,同时硬件复杂度低于FC - ZF。QHybrid在降低硬件复杂度的同时,性能有一定损失,但通过合理的量化设计可以在一定程度上弥补。B - MIMO虽然硬件实现简单,但性能相对较差。综合考虑,混合预编码方案在大规模多用户MIMO系统中具有较高的应用价值,为实际系统设计提供了重要参考。未来研究可以进一步优化混合预编码方案,探索更有效的量化方法,以提升系统性能和降低硬件复杂度。
📚2 运行结果
部分代码:
Nt = 128;
K = 4; % UE number
Np = 10; % number of paths per user
B1 = 1; % quantized analog beamforming, up to B bits of precision
B2 = 2;
SNR = -30 : 5 : 0;
nSNR = length(SNR);
channNum = 1e3;
rateZF = zeros(nSNR, 1); % FC-ZF
rateHyb = zeros(nSNR, 1);% W = ZF at baseband, F = PR at analog
rateHybQ1 = zeros(nSNR, 1);% Quantized hybrid precoding
rateHybQ2 = zeros(nSNR, 1);
rateBMIMO = zeros(nSNR, 1);% Multiuser beamspace MIMO precoder (BMIMO)
for isnr = 1 : nSNR
P = 10^(SNR(isnr)/10);
for ichannel = 1 : channNum
[H, Gain, At] = GenChannelSimp(Nt, K, Np, 0.5); % mmWave channel
% H = K x Nt, Gain = Np x K, At = Nt x Np x K
% ============= ZF preocidng, numerical ================
WtZF = H'*inv(H*H');
WZF = WtZF*inv(sqrt(diag(diag(WtZF'*WtZF)))); % normalized columns
rateZF(isnr) = rateZF(isnr) + CalRate(P/K*eye(K), H, WZF);
% ============ Hybrid precoding, numerical ===============
for ik = 1 : K
ph = - phase(H(ik,:));
ph = ph(:);
F(:,ik) =1/sqrt(Nt)* exp(j.*ph); % analog RF preprocessing
end
Fb = CalBDPrecoder(H*F);% digital baseband, same as inverse with column normalization
wt = F*Fb;% aggregated precoder
WPR = wt*inv(sqrt(diag(diag(wt'*wt))));
.....
LineWidth = 1.5;
MarkerSize = 6;
figure
plot(SNR, abs(rateZF), 'k-o', 'LineWidth', LineWidth, 'MarkerSize', MarkerSize)
hold on
plot(SNR, abs(rateHyb),'r-*', 'LineWidth', LineWidth, 'MarkerSize', MarkerSize)
hold on
plot(SNR, abs(rateHybQ1), 'b-^', 'LineWidth', LineWidth, 'MarkerSize', MarkerSize)
hold on
plot(SNR, abs(rateHybQ2), 'b-v', 'LineWidth', LineWidth, 'MarkerSize', MarkerSize)
hold on
plot(SNR, abs(rateBMIMO), 'm-s', 'LineWidth', LineWidth, 'MarkerSize', MarkerSize)
hold off
legend('FC-ZF Precoding', 'Hybrid Precoding', 'Quantized Hybrid Precoding, B = 1',...
'Quantized Hybrid Precoding, B = 2', 'B-MIMO Preocoding');
xlabel('SNR (dB)')
ylabel('Spectral Efficiency (bps/Hz)')
% title(sprintf('Nt = %d, K = %d, Np = %d',Nt, K, Np))
grid
saveas(gcf, sprintf('MainCompareScheme-Nt%d-K%d-Np%d', Nt, K, Np)); % save current figure to file
toc
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]董妮娅,林毅.大规模多用户MIMO系统中的低复杂度混合预编码方案[J].黑龙江科技信息, 2019.
[2]王明辉.毫米波大规模MIMO系统预编码技术研究[D].杭州电子科技大学[2025-02-02].
[3]徐帅,岳殿武.毫米波大规模多用户MIMO的混合预编码研究[J].天线学报, 2017, 6(3):8.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取