【智能表面RIS】可实现的RIS辅助MIMO广播信道的最大总速率研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

智能表面(RIS)辅助MIMO广播信道的最大总速率研究

1. RIS与MIMO广播信道的技术背景

1.1 RIS的基本原理

1.2 MIMO广播信道特性

2. RIS辅助MIMO广播信道的系统模型

2.1 系统架构

2.2 信号模型

3. 最大总速率的理论优化方法

3.1 优化问题建模

3.2 交替优化算法

3.3 MAC-BC对偶性与混合预编码

4. 现有研究成果与性能分析

4.1 性能提升关键因素

4.2 典型仿真结果

5. 挑战与未来方向

5.1 当前限制

5.2 未来研究方向

6. 结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

智能表面(RIS)辅助MIMO广播信道的最大总速率研究

摘要:
可重构智能表面(RIS)代表一种能够塑造无线电波传播的新技术,因此提供了多种可能的性能和实施优势。受此启发,我们研究了在RIS存在的情况下广播信道(BC)中的可实现总速率优化。我们通过利用高斯多输入多输出(MIMO)BC和多址接入信道(MAC)之间的众所周知的对偶关系来解决这个问题,并相应地推导出了三种优化用户协方差矩阵和对偶MAC中RIS相移的算法。用户的协方差矩阵通过块坐标最大化(BCM)的对偶分解方法或基于梯度的方法进行优化。RIS相移可以通过使用封闭形式表达式依次优化,也可以通过基于梯度的方法并行计算。我们对所提出算法的计算复杂度进行了分析。模拟结果表明,所提出的算法总体上趋于收敛到相同的可实现总速率,但由于所考虑问题的非凸性,可能对某些特定情况产生不同的总速率性能。此外,基于梯度的优化方法通常更加高效。此外,我们证明了所提出的算法可以在多个RIS辅助的BC中提供显著的增益,并且该增益取决于RIS的放置位置。

满足无线通信网络中不断增长的数据速率需求的需求,推动了RIS等新技术解决方案的发展。RIS是由大量小型、低成本和被动元件以及二极管或可变电容器等低功耗电子电路组成的元表面。由于每个元件都可以通过可调相移反射入射信号,RIS能够有效地塑造入射波的传播。因此,引入RIS提供了多种可能的实施优势,并可能在无线通信中开辟新的里程碑。

为了充分利用使用RIS带来的优势,我们需要深入了解RIS辅助无线通信系统的不同方面。可能最重要的方面涉及RIS相移的最佳设计,以便改变传入的无线电波,从而最大化前述的优势。在这方面,为优化可实现速率而开发算法对于RIS辅助通信尤为重要。这一领域的大量研究工作集中在优化点对点MIMO通信的可实现速率上。在[4]和[5]中提出的算法提供了优化发送协方差矩阵的高效方法;然而,这些工作并未涉及多用户MIMO。在[6]中分析了在室内毫米波(mmWave)环境中具有阻塞直射链路的单流MIMO系统的可实现速率优化。[6]中提出的优化方案提供了接近最优的可实现速率,并且需要较低的计算和硬件复杂度。

1. RIS与MIMO广播信道的技术背景
1.1 RIS的基本原理

可重构智能表面(RIS)是一种基于超材料的二维人工电磁表面结构,通过调整其电磁单元的物理特性(如相位、幅度、极化)实现对无线信号的动态调控。其核心功能包括:

  • 反射/折射控制:通过PIN二极管、变容二极管等可调元件动态调整电磁波的传播路径,例如增强信号聚焦、抑制多径衰落。
  • 波束赋形:通过调整大量亚波长单元的相位,使反射信号在特定方向同相叠加,提升接收端信噪比(SNR)。
  • 工作模式:分为静态、动态(信道透明或非透明)模式。动态模式通过实时信道估计优化反射参数,平衡性能与开销。
1.2 MIMO广播信道特性

MIMO广播信道(MIMO-BC)允许基站通过多天线同时服务多个用户,其容量提升依赖于空间复用和分集增益。关键挑战包括:

  • 多用户干扰(MUI) :需通过预编码(如脏纸编码DPC或零强制波束成形ZFBF)抑制干扰。
  • 信道状态信息(CSI)获取:有限反馈或信道估计误差会影响容量。
2. RIS辅助MIMO广播信道的系统模型
2.1 系统架构
  • 组成:基站(BS)、RIS(含N个反射单元)、K个多天线用户。
  • 信道链路
    • BS-RIS链路(信道矩阵H1):视距(LOS)或非视距(NLOS)路径。
    • RIS-用户链路(信道矩阵H2):受RIS反射参数Θ(相移矩阵)影响。
    • 直接链路(BS-用户):可能因遮挡而缺失。
2.2 信号模型

用户接收信号可表示为:

其中:

  • W为基站预编码矩阵。
  • Θ=diag(ejθ1,…,ejθN)为RIS相移矩阵。
  • nk​为加性高斯噪声。
3. 最大总速率的理论优化方法
3.1 优化问题建模

目标是在功率约束下最大化总速率:

约束条件包括:

3.2 交替优化算法

由于联合优化WW和ΘΘ的非凸性,常用交替优化(AO)方法分解问题:

  1. 固定RIS相移,优化预编码
    • 使用DPC或线性预编码(如ZFBF)最大化速率。
  2. 固定预编码,优化RIS相移
    • 利用黎曼流形优化处理单位模约束,或梯度下降法逼近局部最优。
  3. 迭代收敛:直至总速率变化小于阈值。
3.3 MAC-BC对偶性与混合预编码
  • 基于对偶性,将下行链路问题转换为上行多址信道(MAC)问题,简化优化复杂度。
  • 毫米波频段中,结合模拟相移网络(PSN)与数字预编码的混合方案可降低硬件成本。
4. 现有研究成果与性能分析
4.1 性能提升关键因素
  • RIS单元数量:单元数N增加可提升波束赋形自由度,但边际增益递减(受信道相关性限制)。
  • 信道环境:在NLOS场景下,RIS通过重构传播路径显著提升容量(较传统MIMO增益可达30%-50%)。
  • 优化算法:交替优化相比随机相移方案可提升20%-40%的总速率。
4.2 典型仿真结果
  • SNR影响:高SNR下,RIS辅助系统的总速率接近理论上限(如DPC容量)。
  • 能效(EE) :RIS的低功耗特性(仅需控制电路供电)使其在EE优化中表现优异,尤其在低SNR区域。
5. 挑战与未来方向
5.1 当前限制
  • 信道估计开销:大规模RIS导致级联信道估计复杂度高,需压缩感知或机器学习辅助。
  • 非理想条件:量化相移误差、硬件损伤(如I/Q不平衡)会降低实际性能。
5.2 未来研究方向
  • 深度学习优化:利用神经网络替代传统迭代算法,降低计算复杂度。
  • 多RIS协作:研究分布式RIS布局对覆盖与容量的协同效应。
  • 6G集成:结合太赫兹通信、全双工等技术,拓展RIS在超密集网络中的应用。
6. 结论

RIS通过动态调控无线环境,为MIMO广播信道提供了新的性能提升维度。现有研究表明,通过联合优化预编码与相移矩阵,可显著提升总速率,尤其在NLOS和低SNR场景下。然而,信道估计、非理想硬件效应及算法复杂度仍是实际部署的瓶颈。未来研究需结合新型优化理论与硬件设计,推动RIS在6G中的规模化应用。

📚2 运行结果

部分代码:

% initial RIS phase shifts
        theta0= rand(Nris,1)+1i*rand(Nris,1);
        theta = theta0./abs(theta0);
        
        % initial covariance matrices (randomly generated)
        for user = 1:K
            S0 = rand(Nr,Nr)+1i*rand(Nr,Nr);
            S0 = S0*S0';
            Sin(:,:,user) = S0/trace(S0)*Pt/K;
        end

        % Algorithm 3 (AO)
        [R,t] = Algorithm3AO(Nt,Nris,Pt,K,Hdir,H1,H2,theta,Sin,no_iter);
        tAO = (tAO*(iChan-1)+t)/iChan;
        RAO = (RAO*(iChan-1)+R)/iChan;

        % Algorithm 4 (Approximate AO)
        [R,t] = Algorithm4ApproximateAO(Nt,Nr,Pt,K,Hdir,H1,H2,theta,Sin,no_iter);
        tAAO = (tAAO*(iChan-1)+t)/iChan;
        RAAO = (RAAO*(iChan-1)+R)/iChan;

        % Algorithm 5 (APGM)
        [R,t] = Algorithm5APGM(Nt,Nr,Pt,K,Hdir,H1,H2,theta,Sin,no_iter);
        tPGM = (tPGM*(iChan-1)+t)/iChan;
        RPGM = (RPGM*(iChan-1)+R)/iChan;

    end
    figure
    plot(tPGM,RPGM,'r','DisplayName','PGM');
    hold on;
    plot(tAAO,RAAO,'b','DisplayName','Approx. AO');
    hold on;
    plot(tAO,RAO,'g','DisplayName','AO');
    legend('show','location','southeast');
    title('Convergence vs. wall-clock time');
    figure
    plot(RPGM,'r','DisplayName','Algorithm 5 (PGM)');
    hold on;
    plot(RAAO,'b','DisplayName','ALgorithm 4 (Approx. AO)');
    hold on;
    plot(RAO,'g','DisplayName','Algorithm 3 (AO)');
    legend('show','location','southeast');
    title('Convergence vs. iteration');
    
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值