基于Q-learning算法的机器人迷宫路径规划研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于Q-learning算法的机器人迷宫路径规划研究

一、Q-learning算法基本原理

二、机器人迷宫路径规划的核心挑战

三、基于Q-learning的迷宫路径规划实现步骤

四、优化策略与改进方法

五、实验案例与性能分析

六、应用场景与局限性

七、未来研究方向

八、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


💥1 概述

基于Q-learning算法的机器人迷宫路径规划研究

一、Q-learning算法基本原理

Q-learning是一种无模型的强化学习算法,通过迭代更新状态-动作值函数(Q函数)来学习最优策略。其核心在于构建Q表,记录每个状态-动作对的预期累积奖励,并通过贝尔曼方程动态更新Q值。
数学模型

其中:

  • α为学习率(0 < α ≤ 1),控制新知识的吸收速度;
  • γ为折扣因子(0 ≤ γ < 1),平衡当前奖励与未来收益;
  • r为即时奖励。

关键特点

  1. 离线更新:无需实时环境模型,直接通过试错学习。
  2. ε-贪婪策略:以概率ε随机探索新动作,1-ε概率选择当前最优动作,平衡探索与利用。

二、机器人迷宫路径规划的核心挑战
  1. 状态空间复杂性

    • 迷宫需离散化为栅格,每个栅格为独立状态(如N×M网格)。
    • 动态障碍物或复杂地形会指数级增加状态数量,导致Q表维度爆炸。
  2. 奖励函数设计

    • 正向激励:到达目标点奖励+10至+100(如)。
    • 负向惩罚:碰撞障碍物奖励-10,无效移动奖励-1(鼓励高效路径)。
    • 中间引导:某些研究加入方向性奖励(如靠近目标时逐步增加奖励)。


3. 收敛性与效率

  • 传统Q-learning在大型迷宫中收敛缓慢,需数千次迭代。
  • 局部最优陷阱:如人工势场法易陷入局部极小点。

三、基于Q-learning的迷宫路径规划实现步骤
  1. 环境建模

    • 将迷宫映射为二维栅格,标记起点、终点、障碍物。
    • 状态定义:机器人坐标(x, y)或栅格编号。
    • 动作空间:{上、下、左、右},若移动越界或撞墙则保持原状态。
  2. Q表初始化

    • Q表维度为状态数×动作数,初始值通常设为0或小随机数。
  3. 训练过程

    • 参数设置:典型值α=0.1~0.5,γ=0.9~0.99,ε初始为0.7并逐步衰减。
    • 迭代更新:每个Episode从起点出发,按ε-贪婪策略选择动作,更新Q值直至到达终点。
  4. 路径提取

    • 训练完成后,从Q表中选择每个状态的最大Q值动作,生成最优路径。

四、优化策略与改进方法
  1. 状态空间压缩

    • 层次化Q-learning:将迷宫划分为子区域,分层规划。
    • 神经网络替代Q表:使用DQN处理高维状态(如连续坐标),避免维度灾难。
  2. 奖励函数增强

    • 动态奖励:根据距离目标的曼哈顿距离调整奖励梯度。
    • 路径平滑惩罚:对拐点数量施加额外惩罚,减少冗余移动。
  3. 参数自适应调整

    • 变步长学习率:初期高α加速收敛,后期低α提高稳定性。
    • 动态ε衰减:如每Episode衰减ε=ε×0.995,平衡探索与利用。
  4. 混合算法

    • Q-learning + A*:用A*算法生成初始路径,Q-learning优化动态调整。
    • 融合RRT:在复杂迷宫中结合快速随机树扩展探索范围。

五、实验案例与性能分析
  1. 基础实验(4×3迷宫)

    • 结果:Q-learning在200次迭代后找到最优路径,平均步长从初始30步降至12步。
    • 对比指标:收敛速度、路径长度、拐点数。
  2. 大规模迷宫(36×36栅格)

    • 传统Q-learning:需1200次Episode收敛,路径拐点数平均15个。
    • 改进εQ-learning:收敛速度提升40%,拐点数减少至8个。
  3. 动态环境测试

    • 移动障碍物:Q-learning通过在线更新Q表实现实时避障,成功率85%。

性能对比表

算法收敛次数平均路径长度拐点数成功率
传统Q-learning1200581582%
DQN600541288%
BiLSTM-D3QN30050995%
(数据来源:)

六、应用场景与局限性
  1. 典型应用

    • 仓储机器人:在货架迷宫中规划拣货路径。
    • 自动驾驶小车:室内导航与避障。
    • 救援机器人:灾后废墟环境路径规划。
  2. 局限性

    • 维度限制:Q表仅适用于中小型离散状态空间。
    • 静态环境假设:动态障碍物需频繁重训练。

七、未来研究方向
  1. 多智能体协作:多个机器人共享Q表,协同探索迷宫。
  2. 迁移学习:将已训练Q表应用于相似迷宫结构,减少训练时间。
  3. 硬件加速:FPGA实现Q表并行更新,提升实时性。

八、结论

Q-learning算法通过无模型学习和动态策略优化,在机器人迷宫路径规划中展现出强适应性。通过状态空间设计、奖励函数优化及混合算法融合,可显著提升路径质量与收敛效率。尽管存在维度灾难和动态环境适应性不足的局限,结合深度强化学习与硬件加速技术,Q-learning在复杂场景中仍具有广泛应用前景。

📚2 运行结果

部分代码:

DISPLAY_FLAG = 1; % 1 means display maze and 0 means no display
NUM_ITERATIONS = 100; % change this value to set max iterations 
% initialize global variable about robot orientation
currentDirection = 1; % robot is facing up

% row col will be initalized with the position of starting point of robot
% in the loop in which maze is read below
fileName = 'maze-9-9.txt';
[maze2D,row,col] = Read_Maze(fileName);
imagesc(maze2D) % show the maze

% make some copies of maze to use later for display
orgMaze2D = maze2D;
orgMaze2D(row,col) = 50;
[goalX,goalY,val] = find(orgMaze2D == 100);
tempMaze2D = orgMaze2D;

% record robots starting location for use later
startX = row;
startY = col;

% build a state action matrix by finding all valid states from maze
% we have four actions for each state.
Q = zeros(size(maze2D,1),size(maze2D,2),4);

% only used for priority visiting for larger maze
%visitFlag = zeros(size(maze2D,1),size(maze2D,2));

% status message for goal and bump
GOAL = 3;
BUMP = 2;

% learning rate settings
alpha = 0.8; 
gamma = 0.5;

for i=1:NUM_ITERATIONS   
    tempMaze2D(goalX,goalY) = 100;
    row = startX; col = startY;
    status = -1;
    countActions = 0;
    currentDirection = 1;

    % only used for priority visiting for larger maze 
%    visitFlag = zeros(size(maze2D,1),size(maze2D,2));
%    visitFlag(row,col) = 1;            
    
    while status ~= GOAL
        % record the current position of the robot for use later
        prvRow = row; prvCol = col;
        
        % select an action value i.e. Direction
        % which has the maximum value of Q in it
        % if more than one actions has same value then select randomly from them
        [val,index] = max(Q(row,col,:));
        [xx,yy] = find(Q(row,col,:) == val);
        if size(yy,1) > 1            
            index = 1+round(rand*(size(yy,1)-1));
            action = yy(index,1);
        else
            action = index;
        end

        % based on the selected actions correct the orientation of the
        % robot to conform to rules of simulator
        while currentDirection ~= action
            currentDirection = TurnLeft(currentDirection);
            % count the actions required to reach the goal
            countActions = countActions + 1;            
        end
                
        % do the selected action i.e. MoveAhead
        [row,col,status] = MoveAhead(row,col,currentDirection);

        % count the actions required to reach the goal        
        countActions = countActions + 1;            
        
        % Get the reward values i.e. if final state then max reward
        % if bump into a wall then -1 is the reward for that action
        % other wise the reward value is 0                
        if status == BUMP
            rewardVal = -1;
        elseif status == GOAL
            rewardVal = 1;
        else
            rewardVal = 0;
        end

        % enable this piece of code if testing larger maze
%         if visitFlag(row,col) == 0
%             rewardVal = rewardVal + 0.2;
%             visitFlag(row,col) = 1;            
%         else
%             rewardVal = rewardVal - 0.2;
%         end
                
        % update information for robot in Q for later use
        Q(prvRow,prvCol,action) = Q(prvRow,prvCol,action) + alpha*(rewardVal+gamma*max(Q(row,col,:)) - Q(prvRow,prvCol,action));
        
        % display the maze after some steps
        if rem(countActions,1) == 0 & DISPLAY_FLAG == 1
            X = [row col];
            Y = [goalX goalY];        
            dist = norm(X-Y,1);            
            s = sprintf('Manhattan Distance = %f',dist);
            imagesc(tempMaze2D);%,colorbar;
            title(s);            
            drawnow
        end
    end
    
    iterationCount(i,1) = countActions;
    
    % display the final maze
    imagesc(tempMaze2D);%,colorbar;
    disp(countActions);
    %bar(iterationCount);  
    drawnow
end

figure,bar(iterationCount)
disp('----- Mean Result -----')
meanA = mean(iterationCount);
disp(meanA);
%save Q_Learn_9-9.mat;


%-------------------------------%
%  1
% 2 3
%  4
% Current Direction
% 1 - means robot facing up
% 2 - means robot facing left
% 3 - means robot facing right
% 4 - means robot facing down
%------------------------------%
% based on the current direction and convention rotate the robot left
function currentDirection = TurnLeft(currentDirection)
if currentDirection == 1
    currentDirection = 2;
elseif currentDirection == 2
    currentDirection = 4;
elseif currentDirection == 4
    currentDirection = 3;
elseif currentDirection == 3
    currentDirection = 1;
end

% based on the current direction and convention rotate the robot right
function currentDirection = TurnRight(currentDirection)
if currentDirection == 1
    currentDirection = 3;
elseif currentDirection == 3
    currentDirection = 4;
elseif currentDirection == 4
    currentDirection = 2;
elseif currentDirection == 2
    currentDirection = 1;
end


% return the information just in front of the robot (local)
function [val,valid] = LookAhead(row,col,currentDirection)  
global maze2D;
valid = 0;
if currentDirection == 1
    if row-1 >= 1 & row-1 <= size(maze2D,1)
        val = maze2D(row-1,col);
        valid = 1;
    end
elseif currentDirection == 2
    if col-1 >= 1 & col-1 <= size(maze2D,2)
        val = maze2D(row,col-1);
        valid = 1;
    end
elseif currentDirection == 3
    if col+1 >= 1 & col+1 <= size(maze2D,2)
        val = maze2D(row,col+1);
        valid = 1;
    end
elseif currentDirection == 4
    if row+1 >= 1 & row+1 <= size(maze2D,1)
        val = maze2D(row+1,col);
        valid = 1;
    end
end

% status = 1 then move ahead successful
% status = 2 then bump into wall or boundary
% status = 3 then goal achieved
% Move the robot to the next location if no bump 
function [row,col,status] = MoveAhead(row,col,currentDirection)  
global tempMaze2D;

% based on the current direction check whether next location is space or
% bump and get information of use below
[val,valid] = LookAhead(row,col,currentDirection);
% check if next location for moving is space
% other wise set the status
% this checks the collision with boundary of maze
if valid == 1
    % now check if the next location for space or bump
    % this is for walls inside the maze
    if val > 0
        oldRow = row; oldCol = col;
        if currentDirection == 1
            row = row - 1;
        elseif currentDirection == 2 
            col = col - 1;
        elseif currentDirection == 3 
            col = col + 1;
        elseif currentDirection == 4 
            row = row + 1;    
        end
        status = 1;        
        
        if val == 100
            % goal achieved             
            status = 3;
            disp(status);            
        end
        
        % update the current position of the robot in maze for display
        tempMaze2D(oldRow,oldCol) = 50;                 
        tempMaze2D(row,col) = 60; 
    elseif val == 0
        % bump into wall

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]王子强,武继刚.基于RDC-Q学习算法的移动机器人路径规划[J].计算机工程, 2014, 40(006):211-214.DOI:10.3969/j.issn.1000-3428.2014.06.045.

[2]张燕,王志祥,董美琪,等.基于改进Q-learning算法的移动机器人路径规划方法:CN202310368455.8[P].CN116380102A[2024-04-15].

[3]刘志荣,姜树海,袁雯雯,等.基于深度Q学习的移动机器人路径规划[J].测控技术, 2019, 38(7):5.DOI:10.19708/j.ckjs.2018.00.002.

[4]段建民,陈强龙.利用先验知识的Q-Learning路径规划算法研究[J].电光与控制, 2019, v.26;No.255(09):33-37.DOI:10.3969/j.issn.1671-637X.2019.09.007.

🌈4 Matlab代码、数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值