💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
由于光伏阵列长期处于户外环境中,产生的故障原因是多方面的。首先,环境因素如雨雪侵蚀、树木遮挡、灰尘堆积等会对光伏板造成影响,降低其性能和输出功率。其次,光伏板本身的性能问题和电气故障也会导致系统故障。实际运行中常见的故障包括开路故障、短路故障、阴影遮挡和老化故障,这些故障都会显著影响光伏系统的输出功率和运行效率。因此,及时检测和处理光伏系统中的各种故障是确保系统正常运行和发挥最大功率的关键。
与正常运行情况下的输出特性相比,最大功率点电流Imp、短路电流Isc显著减小,而最大功率点电压Ump、开路电压V_oc基本不变。随着光伏阵列规模的扩大,开路所在支路的串联光伏组件越多、开路支路的数量越多,最大功率点电流Imp、短路电流Isc会下降的越多,同时,开路故障所处的组串将不再输出电流,极大减少光伏发电效率。
此外,光伏阵列规模的扩大也会增加光伏组件之间的串联电压,从而增加整个系统的电压等级。这可能会导致系统中其他部分设备(如逆变器、变压器等)的额定工作电压范围被超出,从而影响系统的稳定性和安全性。因此,在设计大规模光伏系统时,需要综合考虑光伏组件的特性、电气设备的匹配以及系统的运行安全性,以确保系统的高效稳定运行。
参考文献:
随着光伏产业的飞速发展,光伏电站的成本控制、运行维护等问题引起了人们的重视,光伏电站由光伏阵列、交流侧输配电设备、逆变器等设备组成,容易产生的故障有:直流侧故障、交流侧输配电故障、逆变器故障等等,而光伏阵列是光伏电站直流侧发电输出的源头,对其进行故障研究显得十分重要[6]。
将光能转换为电能的部件称为光伏电池,光伏电池相互连接装配成光伏组件,数量众多的光伏组件再组合成光伏阵列,光伏阵列的建设成本占整个光伏电站的资金投入在40%以上,是光伏电站的核心组成部分,所处的工作地点为环境多变的野外,出现故障的概率比较高,若不能及时发现并解决光伏阵列的故障问题,将会降低发电效率,严重时烧坏光伏组件引发火灾,这种情况促进了直流侧光伏阵列故障诊断技术的研究,如何准确识别光伏阵列的故障类型,对于指导运维工作人员进行排查和检修故障,降低人工运维成本,和保证光伏发电的稳定性具有重大的意义。因此,研究直流侧光伏阵列的故障诊断技术显得极为重要,己成为光伏行业发展的必然趋势。
电气测量法是指测量运行状态下的光伏阵列的输出量,与理论上的输出量进行对比分析的方法,包括测量I-V曲线、测量接地电容、测量反馈信号等等。2010年,文献l48'通过测量接地电容的大小,来对开路、短路等故障进行诊断,但是该类方法的精确度是要求光伏组件的特性完全一致,这在现实生活中几乎是难以实现的。2019年,文献[4'提出一种基于电压电流的故障检测方法,用于检测光伏阵列常见的开路、短路、老化和阴影遮挡等故障。将实时电压电流数据与相应的阈值进行比较,以检测潜在故障和故障类型。2018年,文献2测量在线的电气数据与预测输出比较,并对残差矢量进行分析来判断是否存在故障。该类方法主要的缺陷是能够诊断的类型较少,对故障发生的位置难以定位。除此之外还有电压、电流和辐照度判断阴影异常等方法。
光伏阵列是光伏电站的发电装置,由光伏组件通过不同的连接方式连接起来,为了分析不同故障下光伏阵列的输出情况,建立其基本组成单元的数学模型,通过分析其故障原因、发生故障时输出参数的变化情况,为后续的光伏阵列故障诊断奠定理论基础。
阴影遮挡下输出特性分析
实际运行中的光伏阵列,其表面不可避免的会有云层遮挡、异物、灰尘等减少光伏电池接收到的太阳能的因素,阴影长遮挡使光伏阵列发电效率降低,当该阴影遮挡长时间存在时,容易产生热斑效应,即被遮挡的电池所产生的电流小于周围其他未被遮挡电池产生的电流,成为电路的耗电负载,使得该部分光伏组件持续升温,当温度到达200摄氏度时,就会损坏组件的物理结构,导致不可逆转的永久损坏[48-50]。
光伏阵列常见故障仿真模型研究
一、光伏阵列常见故障类型及影响分析(基于文献综合)
光伏阵列故障可分为组件间故障和组件故障两大类,具体分类及影响程度如下:
故障类型 | 具体故障 | 影响程度 | 特征表现 |
---|---|---|---|
组件间故障 | 短路故障 | 严重 | 输出电压下降,电流异常升高,可能引发火灾风险 |
开路故障 | 严重 | 电流中断,功率骤降,系统效率降低 | |
拉弧故障 | 严重 | 局部高温导致绝缘层碳化,产生电弧放电 | |
接地故障 | 严重 | 电流泄漏至地面,系统保护装置频繁动作 | |
组件故障(可见) | 阴影遮挡 | 轻微 | I-V曲线呈现“多膝”现象,功率曲线多峰化 |
严重碎裂 | 严重 | 玻璃层破损导致内部电路暴露,输出功率归零 | |
二极管损坏 | 一般 | 旁路功能失效,热斑效应加剧 | |
密封失效 | 一般 | EVA黄变/分层,湿气渗透引发腐蚀 | |
组件故障(不可见) | 隐裂 | 一般 | 微观裂纹扩展导致电阻增大,长期功率衰减 |
热斑 | 一般 | 局部温度升高100℃以上,加速材料老化 | |
PID效应 | 轻微 | 电势差诱导载流子迁移,功率衰减率可达30% | |
异常老化 | 轻微 | 最大功率点电压下降,输出曲线斜率加快 |
环境敏感性:盐雾、沙尘、高湿等环境会使密封失效概率增加58%,PID效应在沿海地区更显著。
二、故障仿真建模方法及技术路线
1. 基础模型构建
-
单二极管模型(Five-Parameter Model):
-
- 通过开路电压(VocVoc)、短路电流(IscIsc)、最大功率点(MPP)参数拟合,可模拟温度/辐照度变化影响。
- 适用场景:组件级I-V特性分析,尤其适用于阴影遮挡和老化仿真。
-
双二极管模型:
- 增加复合电流项,精度提升5-10%,但计算复杂度高,多用于微观缺陷(如隐裂)仿真。
2. 典型故障的仿真实现
故障类型 | 仿真方法 | 关键参数调整 | 输出特性变化 |
---|---|---|---|
短路故障 | 在Simulink中并联低阻值电阻(如0.1Ω) | RshRsh降低至接近0 | 短路电流IscIsc不变,开路电压VocVoc下降50%以上 |
开路故障 | 串联高阻值电阻(如1MΩ)或断开电路节点 | RsRs→∞ | 输出电压趋近于0,功率曲线消失 |
阴影遮挡 | 通过乘法器模块调节辐照度(如0.3×STC) | 光照强度SS分区域降低 | I-V曲线出现多个拐点,功率损失达70% |
PID效应 | 修改二极管反向饱和电流I0I0,增加漏电流项 | I0I0增大2-3个数量级 | 填充因子(FF)下降至0.5以下 |
异常老化 | 逐年递增串联电阻RsRs(年增率0.5-2%) | RsRs线性增长,RshRsh指数下降 | 最大功率点电压VmppVmpp每年下降1-3% |
3. 高级建模技术
-
智能算法融合:
- PSO-WNN模型:粒子群优化小波神经网络,对隐裂和热斑的检测准确率提升至92%。
- LSTM网络:基于时间序列的电压/电流数据,可识别动态故障(如间歇性拉弧)。
-
多物理场耦合:
- 结合热力学模型(COMSOL)与电路模型,模拟热斑导致的温度场畸变。
- 案例:80℃热斑条件下,局部电流密度增加300%,引发EVA分层。
三、典型案例仿真分析
- 5×10阵列局部遮挡仿真(文献[7]):
- 条件:第3列50%遮挡,环境温度25℃,辐照度1000W/m²。
- 结果:
- 总功率损失42.7%,遮挡组件温度升高至58℃。
- I-V曲线出现3个明显台阶,MPPT跟踪误差达22%。
-
MATLAB/Simulink电弧故障模拟(文献[31]):
- 模型:Boost电路+电弧模型(Cassie电弧方程)。
- 特征:电流谐波THD从5%升至18%,高频噪声(>100kHz)能量增加。
-
老化故障的长期预测(文献[41]):
- 参数:RsRs年增率1.5%,运行10年后:
- 输出功率下降19.3%,逆变器效率降低8.2%。
- 仿真与实测误差<3%(基于NASA加速老化试验数据)。
四、挑战与未来趋势
-
现存问题:
- 多故障耦合仿真精度不足(如阴影+PID的叠加效应误差>15%)。
- 实时仿真速度与精度矛盾(1ms步长下误差率达5%)。
-
技术发展方向:
- 数字孪生技术:集成CyberSim三维可视化平台,实现故障定位精度<0.5m。
- 量子优化算法:用于高维参数空间搜索,计算效率提升50倍以上。
- 边缘计算部署:基于Jetson Nano的嵌入式仿真,响应时间<10ms。
📚2 运行结果
2.1 开路故障下输出特性分析
2.2 短路故障下输出特性分析
在短路故障情况下,其短路电流Isc不变,开路电压Voc发生明显的变化, 而输出电压将大幅减少,正常组串将工作在非最大功率点处,并且产生多余热量, 热量过高容易对光伏组件造成伤害,同时,光伏阵列最大功率点电压Ump也有一定的下降。
2.3 阴影遮挡下输出特性分析
局部阴影将使I-U曲线呈现“多膝”现象,P-U特性曲线出现了多峰特性,有明显的功率损失,而开路电压Voc、短路电流Isc未发生变化,最大功率点的电 压Um p和电流I mp下降,并且可以看出,Imp的下降较Ump更加的明显。
2.4 老化故障下输出特性分析
老化故障并不会改变其短路电流Isc和开路电压Voc, 最大功率点向下漂移,且最大功率点电压Ump下降明显。从I-U曲线的斜率来看, 老化曲线下降速率更快,直接影响就是峰值功率下降,导致光伏组件输出功率降低,加速其他正常组件的老化过程,进而导致光伏电站收益减少。
部分代码:
str=['正常运行',]
plot(U,P,'DisplayName',str)
hold on
str=['局部遮阴',]
plot(u3,p3,'DisplayName',str)
xlabel('U/V')
ylabel('P/W')
axis([0 150 0 2500])
hold on
legend
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]李东虎.光伏阵列故障诊断技术的研究及应用[D].贵州大学,2021.DOI:10.27047/d.cnki.ggudu.2021.001557.
[2]陆灵骍.基于数据驱动的光伏阵列故障诊断研究与应用[D].华北电力大学(北京),2019.DOI:10.27140/d.cnki.ghbbu.2019.001138.