💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
1.1 变分模态分解算法
变分 模 态 分 解 ( variational mode decomposition,VMD) 算法是由 Dragomiretskiy 等提出的一种自动自适应、非递归的信号处理方法。此算法克服了 EMD 及其改进算法端点效应和模态分量
混叠的问题,可以将非稳定性、非线性且复杂度高的信号分解为多个相对平稳的子序列,在求解过
程中可自适应匹配最佳中心特征,极大程度地迎合高频率复杂信号的分解。
1.2 蜣螂优化算法
蜣螂优化算法是最新的群智能优化算法,2022年底提出,里面有相关的文章和代码,可以结合自身课题进行研究,值得推荐,亲用优化效果非常的好。
1.3 LSTM
长短时记忆( long-short term memory,LSTM) 神经网络是 Hochreiter 等提出的一种改进后的循环式神经网络,可有效解决循环式神经网络存在的梯度爆炸和阶段性梯度消失的问题。在传统
循环式神经网络基础上,在隐含层增设记忆模块,可使信息较长时间地储存和遗传,其结构如图 1
所示。
VMD-DBO-LSTM研究文档
一、概述
变分模态分解-蜣螂优化算法-长短时记忆神经网络(VMD-DBO-LSTM)是一种结合了多种先进技术的预测模型,旨在提高时间序列数据的预测精度。以下是对该模型中各个组成部分的详细介绍:
-
变分模态分解(VMD)
- 定义:VMD是由Dragomiretskiy等提出的一种自动自适应、非递归的信号处理方法。
- 特点:VMD算法克服了经验模态分解(EMD)及其改进算法存在的端点效应和模态分量混叠的问题。它可以将非稳定性、非线性且复杂度高的信号分解为多个相对平稳的子序列,并在求解过程中自适应匹配最佳中心特征,极大程度地迎合高频率复杂信号的分解。
-
蜣螂优化算法(DBO)
- 定义:DBO是一种新型的群智能优化算法,于2022年底提出。
- 特点:DBO具有较强的全局搜索能力和较快的收敛速度,适用于优化各种复杂问题。在VMD-DBO-LSTM模型中,DBO被用来优化LSTM模型的超参数,如学习率、隐藏层节点数和训练轮数等。
-
长短时记忆神经网络(LSTM)
- 定义:LSTM是由Hochreiter等提出的一种改进后的循环式神经网络。
- 特点:LSTM在传统循环式神经网络的基础上增设了记忆模块,可使信息较长时间地储存和遗传。这一特点使得LSTM能够有效解决循环式神经网络存在的梯度爆炸和阶段性梯度消失的问题,并广泛应用于时间序列数据的预测。
二、模型构建与实现
VMD-DBO-LSTM模型的构建与实现过程包括以下几个步骤:
-
数据预处理
- 对原始时间序列数据进行清洗和归一化处理,以提高模型的预测精度和训练效率。
-
变分模态分解
- 利用VMD算法将预处理后的时间序列数据分解为多个内在模态函数(IMF)。这些IMF能够反映时间序列数据中不同频率和时间尺度的成分。
-
蜣螂优化算法优化LSTM超参数
- 设定LSTM模型的超参数范围,并利用DBO算法对这些超参数进行优化。通过多次迭代和搜索,找到最优的超参数组合。
-
LSTM模型训练和预测
- 使用优化后的LSTM模型对IMF序列进行训练和预测。LSTM模型通过学习IMF序列之间的关系,捕捉时间序列数据的长期依赖关系,并输出最终的预测结果。
三、应用实例与效果评估
VMD-DBO-LSTM模型已被广泛应用于各种时间序列数据的预测中,如风电数据预测、交通流预测等。以下是一个基于风电数据预测的应用实例:
-
数据集
- 使用实际风电场的数据集进行实验验证。数据集包含风电时间序列数据以及相应的输出功率。
-
实验设置
- 将数据集划分为训练集和测试集,用于训练和验证VMD-DBO-LSTM模型的性能。
- 设定LSTM模型的初始超参数范围,并利用DBO算法进行优化。
-
实验结果
- 实验结果表明,与传统的LSTM模型和基于其他元启发式算法优化LSTM模型的方法相比,VMD-DBO-LSTM方法具有更高的预测精度和鲁棒性。
- 通过对比不同模型的预测结果,可以发现VMD-DBO-LSTM模型在预测风电输出功率方面具有显著优势。
四、结论与展望
VMD-DBO-LSTM模型是一种结合了变分模态分解、蜣螂优化算法和长短时记忆神经网络的时间序列数据预测方法。该方法通过分解复杂时间序列数据、优化LSTM模型超参数和提高模型预测精度等方面取得了显著成效。未来,可以进一步探索VMD-DBO-LSTM模型在其他领域的应用,并不断优化和完善该模型以提高其预测性能和泛化能力。
📚2 运行结果
[array([438.46592244, 238.70076528, 225.36197401, 0.5375739 ,
99.97048442])]
17/17 [==============================] - 1s 10ms/step
0.5900796219852575
[array([470.04935822, 205.49285749, 20.59639042, 0.51696884,
71.80868853])]
17/17 [==============================] - 1s 8ms/step
0.5963260932033305
[array([356.62748283, 408.3021335 , 115.77116804, 0.92504373,
197.76297335])]
17/17 [==============================] - 1s 9ms/step
0.3658408520955597
第0次迭代
[array([498.99992122, 445.76211515, 193.23313446, 0.99 ,
197.3849546 ])]
17/17 [==============================] - 1s 13ms/step
0.16002665645771263
第1次迭代
[array([500. , 500. , 288.32703023, 0.99 ,
296.60939568])]
17/17 [==============================] - 1s 15ms/step
0.1059403982865944
第2次迭代
[array([500. , 500. , 220.51743525, 0.99 ,
300. ])]
17/17 [==============================] - 1s 14ms/step
0.1160862607613431
第3次迭代
[array([500. , 500. , 356.39882544, 0.99 ,
300. ])]
17/17 [==============================] - 1s 16ms/step
0.2353825648402862
第4次迭代
[array([500. , 500. , 236.11113691, 0.99 ,
300. ])]
17/17 [==============================] - 1s 14ms/step
0.14742549247204406
最优适应度值: [0.1059404]
最优解: [[500. 500. 288.32703023 0.99 296.60939568]]
17/17 [==============================] - 1s 15ms/step
======Predicting Finished======
r2 rmse mae mape
0 0.755368 0.07351 0.049911 0.268844
Running time: 496.561s
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]邴其春,张伟健,沈富鑫,胡嫣然,高鹏,刘东杰.基于变分模态分解和LSTM的短时交通流预测[J].重庆理工大学学报(自然科学),2023,37(05):169-177.