【翻译论文】Support-Vector Networks(1995)

本文详细介绍了支持向量机(SVM)的理论基础,包括最优超平面、软间隔概念以及内积的回旋方法。SVM通过非线性映射将数据映射到高维特征空间,构建具有良好推广能力的线性决策面。通过实验分析展示了SVM在模式识别和数字识别任务中的优秀性能,表明SVM是一种强大的通用学习机器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【翻译论文】Support-Vector Networks(1995)
Corinna Cortes,Vladimir Vapnik

DOI :10.1023/A:1022627411411

摘要:

支持向量网络是一种针对两类问题的新学习机器.它的实现基于以下思想:将输入向量非线性地映射到一个很高维的特征空间.并在该特征空间中构造一个线性决策平面.该决策平面的特殊性质保证了学习机器具有很好的推广能力.支持向量网络的思想已在完全可分的训练数据集上得以实现,这里我们将它扩展到不完全可分的训练数据集.

利用多项式输入变换的支持向量网络被证明具有很好的推广能力.我们以光学字体识别为实验将支持向量网络和其他不同的经典学习算法进行了性能比较.

关键词:

模式识别, 有效的学习算法, 神经网路, 径向基函数分类器, 多项式分类器

1.介绍

60多年前,R.A.Fisher[7]提出了模式识别领域的第一个算法.该模型考虑n维向量x正态分布N(m1,∑1)和N(m2,∑2), m1 和m2为各个分布的均值向量, ∑1和∑2为各个分布的协方差矩阵,并给出最优解为如下二次决策函数:

支持向量机(SVM)是由 Corinna Cortes 和 Vladimir Vapnik 在 1995 年首次提出的经典分类算法之一[^1]。如果想查找 SVM 的原始论文,可以参考他们发表的文章《Support-Vector Networks》。这篇论文详细介绍了 SVM 的核心概念及其数学基础。 对于希望深入了解 SVM 的研究者来说,《Support-Vector Networks》是一篇重要的学术资源。它不仅定义了 SVM 的基本框架,还探讨了其在高维空间中的表现形式以及如何通过核函数实现非线性分类[^4]。 以下是获取该论文的一些方法: 1. 可以访问各大知名学术数据库,例如 SpringerLink 或 IEEE Xplore,在这些平台上通常能够找到并下载原文献。 2. 利用 Google Scholar 进行检索也是一种有效的方式。“Support-Vector Networks”作为一篇具有里程碑意义的经典文章,被广泛引用且容易查到。 3. 如果所在机构有订阅相关期刊服务,则可以直接通过图书馆网站获得全文权限。 ```python import requests def fetch_paper(url): try: response = requests.get(url) if response.status_code == 200: with open('support_vector_networks.pdf', 'wb') as file: file.write(response.content) print("Paper downloaded successfully.") else: print(f"Failed to download paper. Status code: {response.status_code}") except Exception as e: print(e) # Example URL of the original paper (replace this link accordingly when you find it) paper_url = "https://link.springer.com/content/pdf/10.1007/BF00994018.pdf" fetch_paper(paper_url) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氧艺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值