【翻译论文】Support-Vector Networks(1995)
Corinna Cortes,Vladimir Vapnik
DOI :10.1023/A:1022627411411
文章目录
摘要:
支持向量网络是一种针对两类问题的新学习机器.它的实现基于以下思想:将输入向量非线性地映射到一个很高维的特征空间.并在该特征空间中构造一个线性决策平面.该决策平面的特殊性质保证了学习机器具有很好的推广能力.支持向量网络的思想已在完全可分的训练数据集上得以实现,这里我们将它扩展到不完全可分的训练数据集.
利用多项式输入变换的支持向量网络被证明具有很好的推广能力.我们以光学字体识别为实验将支持向量网络和其他不同的经典学习算法进行了性能比较.
关键词:
模式识别, 有效的学习算法, 神经网路, 径向基函数分类器, 多项式分类器
1.介绍
60多年前,R.A.Fisher[7]提出了模式识别领域的第一个算法.该模型考虑n维向量x正态分布N(m1,∑1)和N(m2,∑2), m1 和m2为各个分布的均值向量, ∑1和∑2为各个分布的协方差矩阵,并给出最优解为如下二次决策函数: