类似drugbank数据库的药物靶点查询方法

我们在了解一个靶点信息的时候,通常会全面了解该靶点的生物学特性(功能、名称分类、亚细胞位置)、与疾病关系(特定疾病关联及疾病作用)、序列(蛋白质序列、基因序列等)、相互作用(结合常数、类型)、表达、通路(位置、作用)及对应药物研发(代谢、药代动力学、不良反应、全球同靶点新药研发信息、适应症和企业在各研发阶段的药物数量)等相关信息,使之选择出更具潜力价值的靶点研究方向,提升药物研发的可行性及成功概率。

而在探索查询靶点信息时,可以利用那些专门针对医药领域的数据库,它们提供的资料往往更加系统和详尽,而且查询效率也更高。如摩熵医药-靶点数据库,已经收录了超过8000个药物靶点的详细信息,同时关联了同靶点药物研发、同靶点中国临床试验、同靶点中国注册、同靶点中国上市等药品信息,并且具备了靶点数据库应有的所有功能。是目前药物靶点信息查询应用最为常用的数据库之一。

下面以摩熵医药-靶点数据库中查询靶点‘EGFR’为例,详细展示靶点信息查询方法

首先进入摩熵医药网站-->免费申请试用靶点数据库-->在’竞争情报’栏目中选择’靶点格局’-->在靶点中选择’EGFR’-->点击‘搜索’,图解如下,可以看到该靶点的研发各阶段统计数据,点击对应的数字可以看到该阶段对应药品品种。

也可通过点击搜索结果中‘EGFR’查看该靶点详细信息,包含了该靶点的基本信息、全球同靶点新药、全球同靶点适应症分析、全球同靶点企业分析、国内同靶点分析等内容。

①目标靶点基本信息

在靶点基本信息中包含了靶点别名、结构信息、序列长度、分子量、功能注释、参与疾病、靶点层级关系、靶点相关通路图,同时关联uniprot(名称和分类、亚细胞位置、疾病与变异、PTM、表达、相互作用、结构、家族、序列和异构体、相似蛋白等)、同靶点药物研发、同靶点中国临床试验、同靶点中国注册、同靶点中国上市等药品信息。

摩熵医药-目标靶点基本信息

摩熵医药-目标靶点关联信息(uniprot)

②全球同靶点新药(EGFR)

在全球同靶点新药(EGFR)信息中包含了靶点对应药物在各个研发阶段数量的图表统计,直观查看靶点药物研发趋势难度,并在’全球新药明细’中详细列出了同靶点药品名称及对应的图表进度,可按研发阶段、企业、适应症、药物类型等字段进行二次筛选,数据报告均可导出下载。

③全球同靶点适应症分析(EGFR)

在全球同靶点适应症分析图表中的数据来自于摩熵医药-全球药物研发数据库,可直接点击绿色字体’下载报告’,在图表中的数字均可点击,直接跳转查看信息,除了靶点热力图展示外,也可选择靶点饼状图、柱状图进行查看。

④全球同靶点企业分析(EGFR)

在全球同靶点企业分析中,支持查看靶点EGFR研发的药企,并可根据其同靶点研发的数量进行排序,点击目标企业,查看该企业EGFR靶点研发药物的详细名称。

⑤国内同靶点品种-企业格局分析(EGFR)

与上述全球同靶点分析一样,只不过针对范围是国内的靶点格局分析。

摩熵医药靶点数据库收录了靶点的基本信息、蛋白质信息、生物序列、靶点相关的通路图,整合了与靶点相关的全球药物研发数据、全球适应症和企业分析情况、国内品种和企业统计分析等信息。可据此了解到靶点的竞争情况、市场前景和热门靶点的演变趋势、新兴靶点的崛起,帮助药企把握新药研发的趋势和市场的需求变化、明确研发热点、评估竞争态势、合理布局研发管线,为企业研发决策提供参考,从而提高研发效率和市场竞争力。

### 如何在 DrugBank 数据库中查找疾病相关靶点 DrugBank 是一个综合性数据库,提供了丰富的药物及其相关信息。为了找到与特定疾病相关的靶点信息,可以按照以下方式操作: #### 使用搜索引擎定位目标 通过访问 DrugBank 官网并利用其内置的搜索功能来输入具体的疾病名称或关键词[^1]。例如,在搜索框中键入 “Alzheimer's disease”,这会返回一系列与该疾病有关的数据条目。 #### 靶点详情页面分析 一旦找到了可能的相关记录,则需进一步查看这些记录中的具体字段内容。每种药物或者化合物的信息页通常都会列出它们的作用机制以及所针对的目标蛋白质(即靶点)。如果存在已知关联于某疾病的靶点,那么这部分描述将会被详尽地展示出来[^2]。 #### 利用 UniProt 关联资源扩展检索范围 值得注意的是,DrugBank 中很多靶点都链接至UniProt数据库。这意味着可以通过点击进入更深层次的研究资料获取更多细节,比如关于这个靶点的功能注释、它参与哪些生物学过程或是信号传导路径等等。这种跨平台的数据整合极大地方便了科研人员深入理解某个特定条件下发生的分子事件。 #### 解析 FASTA 文件格式提取靶点列表 另外一种高效的方法是从公开发布的FASTA文件里筛选感兴趣的内容。以给定的例子来看,“drugbank_target|P19113 Histidine decarboxylase (DB00114; DB00117)”表示了一个名为组胺酸脱羧酶(Histidine Decarboxylase) 的靶点,并且标注出了两个相连的小分子实体(DB编号)[^3]。通过对这类标准化文本形式的理解和处理,能够快速锁定一批潜在候选物用于后续实验验证阶段。 ```python import re def parse_fasta_line(line): pattern = r'drugbank_target\|(\w+)\s+(.+?)\s+\((DB\d+;\s?)+\)' match = re.match(pattern, line) if match: target_id = match.group(1) target_name = match.group(2).strip() drug_ids = [id.strip() for id in match.group(3).split(';')[:-1]] return {"target_id": target_id, "target_name": target_name, "drug_ids": drug_ids} else: raise ValueError("Line does not conform to expected format") line_example = ">drugbank_target|P19113 Histidine decarboxylase (DB00114; DB00117)" parsed_data = parse_fasta_line(line_example) print(parsed_data) ``` 上述代码片段展示了如何解析一条典型的FASTA定义行,从而得到其中包含的关键元数据项。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值