论文简述 | 鸟瞰单目多体SLAM

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

编辑丨当SLAM遇见小王同学


声明: 本文只是个人学习记录,侵权可删。论文版权与著作权等全归原作者所有,小王自觉遵守《中华人民共和国著作权法》与《伯尔尼公约》等国内外相关法律,其他个人或者组织等转载请保留此声明!!

1

摘要

在这篇论文中,我们提出了一种新颖的同时定位和建图系统BirdSLAM,它适用于仅配备单目摄像机的自主驾驶平台的挑战性场景.BirdSLAM通过使用正交(鸟瞰)视图作为执行定位和建图的配置空间,解决了其他单目SLAM系统面临的挑战(例如单目重建中的比例模糊、动态对象定位和特征表示中的不确定性).通过仅假设自我摄像机在地面上的高度,BirdSLAM利用单视图计量线索来精确定位自我车辆和鸟瞰视图中的所有物体.我们证明,我们的系统优于以前严格使用更多信息的工作,并通过消融分析强调每个设计决策的相关性.

2

介绍

在本文中,我们提出了一个具有挑战性的研究问题:仅使用一个(单目)摄像机,我们能多精确地估计一个驾驶平台的自我运动和它周围世界的状态?

用机器人学的话来说,这个估计“机器人”的自我运动及其环境状态的任务被称为SLAM.

SLAM问题的一个一般化:被称为多体SLAM,引起了我们的兴趣.传统的SLAM系统仅通过使用静态特征来估计机器人的自我运动和静态场景图,而多体SLAM还估计场景中每个其他物体的运动,因此是一个广义系统.这对自主驾驶平台至关重要.

传统单目SLAM系统检测和跟踪输入图像中的稀疏几何特征,并生成场景的点云重建.当部署在具有高度动态角色(例如,交通)的场景中时,这些系统面临过多的问题:很难在车辆之间获得一致的几何特征匹配;车辆的通过突然阻碍了具有稳定特征的静态场景区域;(已经模糊的)重建规模出乎意料地迅速漂移.

在本文中,我们提出了BirdSLAM:一个为典型城市驾驶场景的单目多体SLAM系统.它在正交视图(鸟瞰视图)上运行,其中前述“有害因素”的影响较低,也使优化更简单,因为可操作的参数更少.此外,正交视图中的估计值可以直接插入到下游的规划器中:这是一种理想的质量(图1).通过假设所有相关的“动作”都发生在地面上或附近,,BirdSLAM能够对自我车辆和其他交通参与者进行无尺度模糊的运动估计.

总之,BirdSLAM实时准确地估计了长序列鸟瞰视图中的自我运动和其他车辆轨迹,减轻了传统6-DoF SLAM框架在动态场景中的各种细微差别.我们观察到,在真实道路平面场景的SE(2)表示上的3自由度SLAM结果与传统的6自由度SLAM结果相比很好.这简化了优化参数化,从而有助于减少运行时间.

3

系统

4

实验

我们在几个长的KITTITracking序列上进行实验.我们从数据集提供的标签中获得车辆的地面真实定位,并从数据集提供的全球定位系统/惯性测量单元数据中获得地面真实自我运动.

我们将绝对平移误差(ATE)计算为每个车辆单独帧的误差样本的均方根,包括SE(2)世界中的自我车辆.即使表1,2中评估的方法在SE(3)中执行SLAM,我们将它们的估计轨迹投影到地面上,并计算它们在SE(2)设置中的误差

6

结论

单目运动环境下的多体SLAM由于其不适定性是一个难以解决的问题.在本文中,我们在正交(鸟瞰)空间中操作,以克服动态场景对传统单目SLAM系统提出的挑战.此外,BirdSLAM在鸟瞰空间中实时运行,性能优于当前在6 DoF设置中运行的实时最先进的多体SLAM系统.它的性能也与当前离线多体SLAM系统不相上下,后者在更多的资源(时间、计算、特性)下运行.据我们所知,BirdSLAM是第一个正交空间中多体单目SLAM问题解决方案的系统之一.一个有趣的未来方向可能是考虑单视图计量提示不成立的情况,例如在极其陡峭的道路上.

- END -

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值