PoGO-Net:使用图神经网络进行姿势图优化(ICCV 2021)

PoGO-Net是一种新型的位姿图优化方案,利用图神经网络处理相机姿态估计任务。该方法通过集成去噪层解决异常边缘问题,并在多个旋转平均的基础上进行相机绝对位姿的回归。PoGO-Net端到端训练,实现在大规模场景中实时鲁棒的性能,优于现有方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PoGO-Net: Pose Graph Optimization with Graph Neural Networks

李欣怡 * Magic Leap,美国加利福尼亚州桑尼维尔xinli@magicleap.com

Haibin Ling † 美国纽约州斯托尼布鲁克石溪大学 hling@cs.stonybrook.edu

链接:https://www3.cs.stonybrook.edu/~hling/publication/PoGO-Net-21.pdf

摘要

准确的相机位姿估计或全局相机重定位Structure-from-Motion (SfM) 和 SLAM 系统的核心组件。给定成对的相对的相机位姿,位姿图对其进行优化(PGO),这包括到求解一组优化的全局一致的相机的绝对位姿。在这项工作中,我们提出了一种由图神经网络 (GNN) 驱动的新型 PGO 方案,即 PoGO-Net,利用multiple rotation averaging (MRA) 进行相机的绝对位姿回归。具体来说,PoGO-Net 将有噪声的视图作为输入,其中节点和边被设计为对几何约束和局部图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值