CLIP在三维分割场景的突破! CLIP2Scene:对三维场景的新理解与应用

本文介绍了CLIP2Scene,一种利用CLIP的预训练知识进行3D场景理解的新方法。研究者提出语义一致性正则化和语义引导的时空一致性正则化,解决了3D网络对无注释数据和新物体识别的挑战,实现在无注释语义分割和高效注释语义分割中超越现有自监督方法的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:PCIPG-KJ  | 来源:3D视觉工坊

在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf和代码链接。

添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。

前言:

3D场景理解是自动驾驶、机器人导航等领域的基础。当前基于深度学习的方法在3D点云数据上表现出了十分出色的性能。然而,一些缺点阻碍了它们在现实世界中的应用。第一个原因是他们严重依赖大量的带注释点云,尤其是当高质量的3D注释获取成本高昂时。此外,他们通常不能识别训练数据中从未见过的新物体。因此,可能需要额外的注释工作来训练模型识别这些新的对象,这既繁琐又费时。 

OpenAI的CLIP为缓解2D视觉中的上述问题提供了一个新的视角。该方法利用网站上大规模免费提供的图文对进行训练,建立视觉语言关联,以实现有前景的开放词汇识别。基于此,MaskCLIP做了基于CLIP的2D图像语义分割的扩展工作。在对CLIP预训练网络进行最小修改的情况下,MaskCLIP可以直接用于新对象的语义分割,而无需额外的训练工作。PointCLIP将CLIP的样本分类问题从2D图像推广到3D点云

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值