Generating Dense Disparity Maps using ORB Descriptors

博主探讨了基于ORB特征的立体匹配算法,通过手动将所有像素点作为特征点来创建稠密视差图,而非依赖稀疏视差图的插值。文章介绍了利用OpenCV进行相机标定的步骤,并提供了相关教程和源码,虽然算法耗时不适合实时处理,但为生成稠密视差图提供了思路。此外,分享了CSDN上的下载链接,包含了ORB、ELAS、DIASY、LBP等多种算法的实现。
摘要由CSDN通过智能技术生成

博主最近在研究基于特征提取的立体匹配算法,诸如SIFT、SURF、ORB等。基于特征匹配的立体匹配算法相对全局匹配算法,虽然效率较高,但其有一个最大问题就是经过特征提取和匹配只能得到稀疏的视差图,而测距时常常需要获取稠密视差图,这就需要进行后续的插值,由稀疏得到稠密视差图。
这里提供一篇国外的教程《Generating Dense Disparity Maps using ORB Descriptors》,这篇教程主要思路是手动把所有像素点都选为特征点,并基于ORB特征描述子进行立体匹配得出稠密视差图,而不是由稀疏视差图经插值得到。教程中有使用OpenCV进行相机标定的详细过程Stereo calibration using C++ and OpenCV和作者自己使用的标定图像集,可以下载使用。
这里对主要函数进行一些注释,如有错误,欢迎大家批评指正。

void cacheDescriptorVals() {
   //计算关键点特征描述子
  OrbDescriptorExtractor extractor;
  for (int i = 0; i < img_left.cols; i++) {
   //这里先列后行,导致img_left_desc按列存储
    for (int j = 0; j < img_left.rows; j++) {
   
      kpl.push_back(KeyPoint(i,j,1));
      kpr.push_back(KeyPoint(i,j,1));
    }
  }
  extractor.compute(img_left, kpl, img_left_desc);//img_left_desc为32*1列向量
  extractor.compute(img_right, kpr, img_right_desc);
}
//ndisp为图像对的最大视差值
int getCorresPoint(Point p, Mat& img, int ndisp) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值