博主最近在研究基于特征提取的立体匹配算法,诸如SIFT、SURF、ORB等。基于特征匹配的立体匹配算法相对全局匹配算法,虽然效率较高,但其有一个最大问题就是经过特征提取和匹配只能得到稀疏的视差图,而测距时常常需要获取稠密视差图,这就需要进行后续的插值,由稀疏得到稠密视差图。
这里提供一篇国外的教程《Generating Dense Disparity Maps using ORB Descriptors》,这篇教程主要思路是手动把所有像素点都选为特征点,并基于ORB特征描述子进行立体匹配得出稠密视差图,而不是由稀疏视差图经插值得到。教程中有使用OpenCV进行相机标定的详细过程Stereo calibration using C++ and OpenCV和作者自己使用的标定图像集,可以下载使用。
这里对主要函数进行一些注释,如有错误,欢迎大家批评指正。
void cacheDescriptorVals() {
//计算关键点特征描述子
OrbDescriptorExtractor extractor;
for (int i = 0; i < img_left.cols; i++) {
//这里先列后行,导致img_left_desc按列存储
for (int j = 0; j < img_left.rows; j++) {
kpl.push_back(KeyPoint(i,j,1));
kpr.push_back(KeyPoint(i,j,1));
}
}
extractor.compute(img_left, kpl, img_left_desc);//img_left_desc为32*1列向量
extractor.compute(img_right, kpr, img_right_desc);
}
//ndisp为图像对的最大视差值
int getCorresPoint(Point p, Mat& img, int ndisp)