【2025版】最新大模型落地应用(整理大全)大模型入门到精通,收藏这篇就够了

在当今科技飞速发展的时代,大模型技术宛如一颗璀璨的新星,照亮了各个行业的发展道路。大模型凭借其强大的数据分析和处理能力,正在众多领域中发挥着巨大的作用,为我们的生活和工作带来了前所未有的便利和创新。接下来,让我们一起深入了解大模型在各个领域的精彩应用。

一、AIGC:内容创作的智能引擎

AIGC,即人工智能生成内容,是大模型技术的一个重要应用方向。它就像是一个不知疲倦的创意伙伴,能够根据给定的主题或要求,快速生成各种形式的内容,如文本、图像、音频等。

(一)文本生成

在广告、媒体和内容创作领域,AIGC 技术大显身手。比如,一家广告公司要为一款新的智能手机撰写宣传文案。以往,文案撰写人员可能需要花费大量时间收集资料、构思创意,而现在借助 AIGC 工具,只需输入关于手机的关键信息,如独特的拍照功能、强大的处理器性能等,AIGC 就能迅速生成多版本富有创意和吸引力的宣传文案,大大提高了内容生产效率。再如,一些新闻媒体利用 AIGC 根据新闻事件的关键要素,快速生成新闻稿的初稿,记者再在此基础上进行优化完善,能更及时地将新闻传递给大众。

(二)AI 绘画

AI 绘画是 AIGC 技术的一大亮点。想象一下,你脑海中有一个奇幻的场景:一座漂浮在云端的城堡,周围环绕着五彩斑斓的飞鸟。你只需将这个想法描述给 AI 绘画工具,它就能通过大模型的算法,在短时间内将你脑海中的画面绘制出来。像 Midjourney、Stable Diffusion 等 AI 绘画工具,吸引了众多艺术爱好者和设计师的关注。一些插画师利用这些工具获取灵感,快速绘制草图,再进行精细化加工;还有一些企业将 AI 绘画用于产品包装设计、宣传海报制作等,为品牌形象塑造带来了新的创意和活力。

(三)电商领域

在电商行业,AIGC 技术贯穿了从商品展示到客户服务的多个环节。在商品展示方面,通过 AIGC 可以快速生成商品的 3D 模型,实现虚拟试穿、虚拟货场等功能。比如,一家服装电商利用 AIGC 技术,让消费者在购物时可以通过上传自己的身材数据和照片,在虚拟模特身上看到服装的试穿效果,极大地提升了购物体验。在客户服务方面,AIGC 驱动的智能客服能够快速准确地回答客户的各种问题,如产品咨询、订单查询、售后问题处理等,提高了客户服务的效率和满意度。

二、ChatBot:智能对话的贴心助手

ChatBot,也就是聊天机器人,是大模型技术在自然语言处理领域的典型应用。它能够理解用户的语言,并以自然流畅的方式与用户进行对话,提供信息或解决问题。

(一)客户服务

许多企业都引入了 ChatBot 来提升客户服务质量。以电信运营商为例,每天会接到大量客户关于套餐咨询、话费查询、故障报修等方面的电话。现在,通过部署 ChatBot,客户可以在官方网站或手机 APP 上与聊天机器人进行对话,快速获取所需信息。比如,客户询问 “我的手机流量套餐还有多少剩余?”ChatBot 能够迅速查询客户账户信息,并给出准确的答复。对于一些常见问题,ChatBot 能够即时解决,大大减轻了人工客服的压力,提高了客户服务的响应速度和效率。

(二)在线教育

在在线教育领域,ChatBot 可以作为虚拟学习伙伴,为学生提供个性化的学习支持。例如,学生在学习数学课程时遇到了一道难题,向 ChatBot 提问。ChatBot 不仅能够给出详细的解题步骤,还能根据学生的学习情况和知识掌握程度,提供相关知识点的复习建议和拓展练习。它还可以陪伴学生进行语言学习,如英语对话练习,纠正学生的发音和语法错误,帮助学生提高语言能力。

三、Copilot:工作效率的提升利器

Copilot,即智能副驾,是大模型赋能工作场景的又一重要应用。它就像一位智能助手,能够辅助用户完成各种工作任务,提高工作效率和质量。

(一)办公软件集成

以微软的 Copilot for Microsoft 365 为例,均胜电子作为全球汽车电子与电子安全领先供应商,在引入该工具后,工作效率得到了显著提升。在 Teams 会议中,Copilot 能够实时总结会议讨论的关键点,记录每位成员的发言内容和意见,并提出行动建议,自动分配任务给特定人员,让团队协作更加高效。在处理 Outlook 邮件时,Copilot 可以从多个电子邮件对话中提取关键信息,快速生成邮件草稿,大幅提升了邮件处理效率。此外,利用 Copilot 工具,还能基于 Word 文档一键生成 PowerPoint 演示文稿,并自动应用布局及主题,大大简化了内容转换的流程。

(二)软件开发

在软件开发领域,Copilot 同样发挥着重要作用。例如,GitHub Copilot 能够帮助程序员快速完成代码编写任务。当程序员输入一段功能描述时,GitHub Copilot 可以自动生成相应的代码片段,甚至整个函数。它还能帮助程序员进行代码调试,指出代码中的潜在问题和错误,提高软件开发的速度和质量,让程序员能够将更多的精力集中在复杂问题的解决和创新功能的开发上。

四、Insight:数据洞察的智慧之眼

Insight 应用侧重于通过大模型对海量数据进行深入分析,挖掘其中有价值的信息和趋势,为企业决策提供有力支持。

(一)市场分析

在竞争激烈的市场环境中,企业需要及时了解市场动态和消费者需求。通过 Insight 应用,企业可以收集和分析来自社交媒体、电商平台、行业报告等多渠道的数据。比如,一家食品企业利用 Insight 工具分析社交媒体上关于食品口味、健康饮食趋势等方面的讨论,发现消费者对低糖、低脂的健康食品需求日益增长。基于这一洞察,企业及时调整产品研发方向,推出了一系列符合市场需求的健康食品,取得了良好的市场反响。

(二)金融风险评估

在金融领域,Insight 应用可以帮助金融机构评估贷款风险、检测欺诈行为等。例如,银行在审批贷款时,通过 Insight 应用对申请人的信用记录、财务状况、消费行为等多维度数据进行分析,利用大模型的算法预测申请人的还款能力和违约风险,从而更准确地做出贷款审批决策,降低金融风险。

五、Agent:智能协作的多面能手

Agent 应用是大模型技术在智能协作方面的创新实践,它可以代表用户执行一系列复杂的任务,实现多系统、多任务的自动化协作。

(一)智能办公

在企业办公场景中,Agent 可以集成多种办公软件和业务系统,实现工作流程的自动化。比如,一家企业的市场部门在举办一场线上营销活动时,Agent 可以自动完成从活动策划、邮件邀请客户、社交媒体推广到活动数据分析的一系列任务。它能够根据预设的规则和流程,在不同的系统之间进行数据交互和操作,协调各个环节的工作,大大提高了办公效率和协作的流畅性。

(二)智能家居控制

在智能家居领域,Agent 可以作为家庭智能设备的控制中枢。用户只需通过语音指令,Agent 就能协调家中的智能灯光、智能家电、智能安防等设备协同工作。例如,用户说 “我要睡觉了”,Agent 可以自动关闭灯光、调节空调温度、启动安防系统,为用户创造一个舒适、安全的睡眠环境,实现家居生活的智能化和便捷化。

六、ToB行业应用案例

彭博社BloombergGPT金融大模型

BloombergGPT是Bloomberg训练出来的金融大语言模型(LLM for Finance),彭博的机器学习产品和研究小组和人工智能工程团队合作,利用彭博在数据创建、收集和整理方面的资源,构建了迄今为止规模最大的专业领域数据集之一。

开发团队从这个由海量英文金融文档组成的档案库中提取并创建了一个包含3,630亿词例(token)的金融数据集。这批数据又与另一个包含3,450亿词例的公共数据集叠加,成为了包含超7,000亿词例的大型训练语料库。彭博的研究团队利用该语料库的一部分内容,训练了纯解码器(decoder-only)因果语言模型,包含500亿个参数。

  • 模型参数量为500亿,使用了包含3630亿token的金融领域数据集以及3450亿token的通用数据集
  • 隐藏层维度为7680,多头的头数为40
  • 模型采用Unigram tokenizer,AdamW优化器
  • 对BloombergGPT的评估包含了两部分:金融领域评估与通用领域评估
  • 评估对比的其他大语言模型有GPT-NeoX、OPT、BLOOM、GPT-3
  • 在金融领域任务上,BloombergGPT综合表现最好;在通用任务上,BloombergGPT的综合得分同样优于相同参数量级的其他模型,并且在某些任务上的得分要高于参数量更大的模型
  • BloombergGPT模型在金融领域取得好效果的同时,并没有以牺牲模型通用能力为代价
  • 对模型定性评估的结果表明,BloombergGPT可以提高工作效率
  • 出于安全性的考虑,BloogbergGPT模型不会被公开,但是模型训练和评估的相关经验和思考会被分享出来
马上消费金融 天镜大模型

马上消费金融天镜大模型在汇集智慧、唤醒知识、众创价值等几个方面比较突出:

  • 汇集智慧方面,主要是应用在人工客服场景,通过大模型提炼萃取一线优秀人工坐席客服经验,汇聚成群体智慧,从而拥有一对多服务客户的能力,也可作为人工坐席的辅助角色,帮助推荐、优化回答该模型已运行近3个月,意图理解准确率达91%,相较于传统AI的68%有较大提升;客户参与率61%,高于传统模型43%的参与率,也高于人工坐席平均28%的水平;
  • 唤醒沉睡知识,主要是高效解决了提取、利用非结构化文档中的数据资料的痛点。例如,将企业招股书、财报、经济预测数据等文件上传后,天镜大模型可以深入解析金融领域专业术语、同时查询定位多个不同文档、洞悉金融图表隐含的信息和强大归纳总结能力;
  • 众创数据价值,主要是为了降低使用数据的门槛。天镜大模型SQL生成平台不再需要代码等专业指令,可直接向AI 说大白话,天镜自动理解需求、展开检索、生成答复。当前,天镜每日线上SQL生成数量650多次,线上SQL生成可执行比例53.4%,SPIDER标准数据集EX得分75.2,线上使用者满意反馈比例82.3%,表现领先行业。
阿里巴巴城市大模型 CityGPT

2023 年 7 月 7 日,城市大模型 CityGPT 正式发布,旨在提升智能城市的治理能力,赋能城市经济、产业、商业、文旅、金融等领域,打造真正的城市级大脑。具体地,在认知人工智能领域首次开启了空间场景智能决策以及“元宇宙城市”可交互体验价值链,能够实现对城市-园区-商圈-社区-网点级别的智能计算与研判,为线上线下数实融合的智能决策和场景交互提供具有 AI 自学习能力的“空间 AI 专家顾问”服务。

DeepMind生物科技模型AlphaFold2

AlphaFold2通过深度学习和人工神经网络等技术,预测蛋白质的三维结构。在此之前,预测蛋白质结构是一项非常耗时、困难且复杂的任务,需要耗费许多时间和大量的实验数据。AlphaFold2 使得人们可以在数分钟内预测蛋白质的结构。

已知氨基酸顺序的蛋白质分子有1.8亿个,但三维结构信息被彻底看清的还不到0.1%。2021年8月,DeepMind公司在《自然》上宣布已将人类的98.5%的蛋白质预测了一遍,计划年底将预测数量增加到1.3亿个,达到人类已知蛋白质总数的一半,并且公开了AlphaFold 2的源代码,免费开源有关数据集,供全世界科研人员使用。

图片

谷歌医疗大模型Med-PaLM,AI医生成绩比肩人类

由谷歌Research和DeepMind共同打造的多模态生成模型Med-PaLM M,懂临床语言、懂影像,也懂基因组学。

Med-PaLM 2 是首个在美国医疗执照考试(USMLE)的 MedMCQA 数据集上达到「专家」应试者水平表现的 LLM,准确率达到 85% 以上,也是首个在包括印度 AIIMS 和 NEET 医学考试问题的 MEDMCQA 数据集上达到及格分数的 AI 系统,得分为 72.3%。

在246份真实胸部X光片中,临床医生表示,在高达40.50%的病例中,Med-PaLM M生成的报告都要比专业放射科医生的更受采纳,这表明Med-PaLM M并非“纸上谈兵”,用于临床指日可待。

华为盘古气象大模型

华为云盘古气象大模型是首个精度超过传统数值预报方法的AI模型,能够提供秒级全球气象预报,原来预测一个台风未来10天的路径,需要在3000台服务器的高性能计算机集群上花费5小时进行仿真。而现在基于预训练的盘古大模型,通过AI推理的方式,只需1台服务器、1卡配置、10秒时间,就可以获得更精确的预测结果。盘古气象大模型的预测结果包括位势、湿度、风速、温度、海平面气压等,可以应用于台风路径预测、降水预测、寒潮和高温预测等多个气象研究细分场景。

中核集团-中核八所

模型:“龙吟·万界”

时间:2024年3月

介绍:“龙吟·万界”是国内首个核领域数字生产力平台,旨在提供一个集大模型智能体开发、应用、管理于一体的一站式企业服务平台。能够结合核工业的各种业务场景,快速设计和开发数字助理,以提高工作效率和决策质量,同时注重技术的自主可控,确保核工业数据的安全和平台的可靠性。

中核集团-同方股份

模型:“华知大模型”2.0

时间:2024年4月

介绍:2023年,同方知网与华为合作建立了人工智能联合创新实验室。不久前,双方联创的华知大模型正式上线运行。此次发布的2.0版本在性能、语料、功能、场景等方面均有明显升级。特别是其注入了知网海量专业知识数据,在专业性、全面性和内容安全性方面具有突出优势,专业性能大幅提升。

模型:农业知识大模型

时间:2024年8月

介绍:中国农业科学院农业信息研究所携手同方股份旗下同方知网在北京正式发布我国首个农业通用大语言模型——农业知识大模型。主要面向农业科技创新、农业生产服务、农业知识科普、辅助农业决策等多领域应用场景,以同方知网自主可控的华知大模型为底座,系统整合了中国农业科学院农业信息研究所海量的农业科技文献和专业数据等知识资源,旨在打造具备NLP、CV、多模态等能力的农业专业知识增强大模型。

秦山核电

模型:“知识管理平台(i-知识)”

时间:2024年8月

介绍:中国核电旗下秦山核电数字化转型专项——“知识管理平台(i-知识)”研发项目通过行业专家鉴定,标志着中国核电首个基于AI大模型的知识管理平台研发成功,为中国核电知识管理平台建设打下了良好基础。秦山核电依托大语言模型、智能检索、知识图谱、语义分析及智能推理等先进数字化技术,高效整合公司内外部海量知识资源,打造“i-知识”管理平台,具备核工业语义库、智能问答等7大核心板块功能,有力提升了核电知识的利用效率。

中国航天科工-航天信息

模型:“爱信诺·信诺GPT”财税产业大模型

时间:2024年7月

介绍:爱信诺·信诺GPT融合了检索增强、强化学习、思维链等前沿技术,是百亿参数规模财税垂直领域大模型。面向财税领域应用提供大模型知识百科、逻辑推理、生成创作、代码生成、自我认知、安全对齐六大通用能力,以及精准匹配财税领域用户需求的信息抽取、问题生成、阅读理解、文本摘要、图表绘制、多轮改写、多轮澄清和表格分析八大核心能力。在此基础上,结合大量财税行业数据、模型训练与基础组件,支撑模型在政策法规与基础知识、财税考试、财税业务办理、风控与筹划的四大专业能力,切实解决企业用户数字化转型实际痛点,推动企业数字化转型。

模型:百舸船舶行业大模型

时间:未提供

介绍:百舸船舶行业大模型,具备国产自主可控,垂直领域知识增强的特点,拥有多参数、多领域、多语种、多技术核心能力。参数规模达140亿,数据语料安全可控。在辅助决策、情报跟踪分析、研报撰写、知识应用等场景具有强大的应用能力。通过整合数智资产,打造船舶行业新质生产力。

中国电科法研院

模型:“万法”大模型

时间:2024年8月

介绍:2024中国国际大数据产业博览会上,中国电科现场发布了“万法”大模型,标志着中国电科在人工智能领域取得了重大突破。该模型具有强大的语言理解和生成能力,能够广泛应用于自然语言处理、智能客服、机器翻译等领域。

模型:“法观”大模型

时间:2024年8月

介绍:中国电科法研院基于自主“万法”大模型底座,联合业内单位共同设计研发“法观”大模型产品,实测通过中国法律职业资格考试,成为首个通过中国法考的法律大模型产品。“我们的大模型,采用司法语料精调与司法知识引导相结合的训练和应用策略,提升精准性和可信度,极大降低‘幻觉’问题,可提供法律知识咨询、政法办案辅助、律师从业辅助、企业合规审查等能力。”技术专家表示。

电科太极

模型:生成式人工智能大模型“小可”

时间:2023年6月

介绍:“小可”作为中国电科深入贯彻网络强国、数字中国战略,面向党政企行业用户,打造的生成式人工智能大模型,提供“通用智能模型大循环+行业智能模型小循环”双循环、“模型训练+测试评估+场景精调+可信增强”四阶段的行业应用新范式,已推出拟文助手、编码助手、智能标绘等系列智能应用,解决了相关领域存在的重复性工作繁多、基于个人经验决策不够科学、工作效率不高等痛点,满足降本增效、流程优化和工作创新等需求。

电科数字

模型:“智弈”大模型

时间:2023年8月

介绍:“智弈”采用深度学习框架和自然语言处理技术,针对多个行业、多种自然语言处理任务,推出文本分类、命名实体识别、文本生成、问答系统、语义角色标注、机器翻译等智能应用,将大模型应用于数字水利、供应链管理、企业策划、人力资源管理、智慧党建等领域,为企业带来更高效的数字化经营能力,为行业用户带来更智能的数字化解决方案。

七、 开源人工智能应用案例

1、VMWare

VMWare 部署了 HuggingFace 的 StarCoder 模型,该模型可帮助开发人员生成代码,从而提高开发效率。VMWare 选择自行托管该模型,而不是使用像微软拥有的 Github 的 Copilot 这样的外部系统。

2、Gab Wireless

这家儿童友好型手机公司强调安全和保障,它使用 Hugging Face 公司提供的一套开源模型,为筛选儿童收发的信息添加了一个安全层。这样可以确保在与不认识的人进行互动时,不会出现不恰当的内容。

3、Perplexity

这家炙手可热的初创公司正在通过使用 LLM 来重塑搜索体验。该公司目前只有 50 名员工,但筹集到 7400 万美元。虽然它不符合我们对企业的定义,但它的有趣之处值得一提。当用户向 Perplexity 提出一个问题时,它的引擎会使用大约六个步骤来做出回答,在此过程中还会使用多个 LLM。Perplexity 的员工 Dmitry Shevelenko 说,倒数第二步默认使用自己定制的开源 LLM。这一步是总结 Perplexity 认为符合用户问题的文章或资料来源的材料。Perplexity 在 Mistral 和 Llama 模型的基础上建立模型,并使用 AWS Bedrock 进行微调。

Shevelenko 说,使用 Llama 至关重要,因为它有助于 Perplexity 掌握自己的命运。他说,在 OpenAI 模型上投资,对模型进行微调是不值得的,因为你并不拥有结果。值得注意的是,Perplexity 还同意为 Rabbit R1 提供动力,因此 Rabbit 也将通过 Perplexity 的 API 有效使用开源 LLM。

4、Intuit

Intuit 是 TurboTax、Quickbooks 和 Mailchimp 等软件的提供商,很早就开始构建自己的 LLM 模型,并在驱动其 Intuit Assist 功能的 LLM 混合中利用开源模型,该功能帮助用户处理诸如客户支持、分析和任务完成工作。在采访中,Intuit 的执行官 Ashok Srivastava 说,其内部 LLM 是基于开源构建并在 Intuit 自己的数据上进行训练的。

5、LyRise

这家人才匹配初创公司 LyRise 使用一个建立在 Llama 上的聊天机器人,像人类招聘人员一样互动,帮助企业从非洲各行业的高质量简历库中找到并雇佣顶尖的 AI 和数据人才。

6、Niantic

Pokemon Go 的创造者推出了一个名为 Peridot 的新功能,它使用 Llama 2 生成宠物角色在游戏中的环境特定反应和动画。

大模型和程序员的关系

(1)目前ChatGPT对程序员到底有哪些实质性的帮助?

第一点:Code Review ChatGPT能够理解代码,并针对代码给出针对性的建议和优化方案;

第二点:写测试用例、单元测试、集成测试等,这些ChatGPT都很擅长!

第三点:对线上问题的定位和分析 线上问题的各种疑难杂症,ChatGPT都能胜任!

第四点:SQL的翻译 实现两种数据库的SQL语言转换,比如将Oracle的SQL脚本转换成MySQL的SQL脚本。

(2)有了AI编程,还需要程序员吗?

第一,在冯诺依曼架构体系下,程序需要的是确定性计算;

第二,由于大模型本身的概率性,目前大模型生成的代码还具备一定的随意性和不确定性;

第三,目前大模型更擅长的是一些抽象层次比较低的工作,比如一段代码或一个算法的实现,写一个单元测试等等。而一些抽象层次比较高的工作,比如需求分析、架构设计、领域设计、架构选型等,这些工作反而是大模型不擅长的,而这些工作是比较具备有竞争力的,这恰恰是一些高级程序员以及系统架构师的价值所在。

(3)应用实践AIGC有几层境界?

第一层境界:简单对话; 通过ctrl-c/v出结果,人人都会。

第二层境界:系统掌握Prompt Engineering; 通过系统掌握好提示词工程,真正赋能工作提效。

第三层境界:将AIGC融入业务流程,指挥AIGC完成复杂的任务; 通过掌握AIGC的技能,并完成业务领域知识的深入结合。

第四层境界:拥有自己的大模型; 熟悉大模型的架构原理,通过开源大模型微调,最好能够拥有一定的行业数据壁垒。

第五层境界:参与设计训练大模型; 比如从事ChatGPT等研发工作。 目前,Edison还处于第二层即提示词工程,我们整理了很多针对SDLC(软件开发生命周期)过程中的经典场景的提示词模板来做提效。 那么,你处于哪一层呢?

(4)如何掌握AI大模型开发技能?

第一步:掌握开发AGI时代新应用程序的技能; 比如:大模型应用内核、LangChain开发框架、向量数据库等;

第二步:搞定开发企业级AI Agent的应用技能; 比如:AI Agent、大模型缓存、算力等;

第三步:驾驭开发企业级专有大模型的技能; 比如:RAG、微调等;

第四步:深入应用大模型技术成为开发大师; 比如:大模型预训练、LLMOps等;

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值