随着数字化转型进程的不断加快,以及网络威胁的复杂程度呈指数级攀升,安全运营模式也正从以往的单品防御、规则驱动模式,逐步朝着数据驱动与人工智能赋能的智能防御时代迈进。众多网络安全厂商纷纷推出了各自的安全垂域大模型,像奇安信QAX - GPT安全机器人、深信服安全GPT、360安全Agent、天融信天问大模型TopASK、安恒恒脑等,它们都致力于打造“以模治模”“AI对抗AI”的数智化安全运营全新范式。
最近,我在外出交流时,频繁被问及有关智能体(AI Agent)的问题。在本文中,将为您深入解读如何定义和理解网络安全行业的智能体(AI Agent)、多智能体(Multi - AI Agent),以及智能体在AI + SOC中的具体应用。
一、什么是智能体AI Agent
在AI技术飞速发展的今天,“智能体Agent”这个词频繁出现在各大科技论坛、行业报告和创业项目中。然而,当我们试图理解“什么是Agent”时,却发现这个概念并不像我们想象的那么清晰。很多人会说:“不就是大模型调用API吗?”但这只是对Agent的一种片面理解。在深入探讨怎么定义“网络安全行业的智能体Agent”这个问题之前,我们先来看一下到底什么是Agent?
1、Agent ≠ 大模型调用API
许多人误以为,只要是一个大语言模型(LLM)调用了外部工具或接口(如天气查询、数据库访问),那就是一个Agent。其实不然。
虽然这种操作是Agent的一部分功能体现,但它远不能涵盖Agent的全部含义。如果我们仅仅停留在“API调用”的层面,那就像是把汽车定义为“能踩油门就走的东西”,忽略了方向盘、发动机、导航系统等核心部件的存在。
2、从词源出发:Agent 是「代理」的意思
从英文原词来看,Agent 最原始的含义是“代理人”或“代理者”。也就是说,它强调的是某种实体能够代表某人去做某些事情的能力。
在人工智能语境下,我们可以这样理解:
Agent是一个能模拟人类行为、通过使用工具或执行动作来完成任务的系统。
换句话说,Agent 的本质是让机器像人一样思考、决策并行动。它不只是被动地回答问题,而是主动地规划、记忆、推理,并与环境互动。
3、经典定义解读:OpenAI 与复旦NLP 的视角
目前,学术界和工业界对 Agent 的定义虽有差异,但都围绕着“模拟人的能力”这一核心展开。
✅ OpenAI 的定义:Agent = LLM + 规划 + 记忆 + 工具使用
Lilian Weng,OpenAI 的研究主管,在其博客中提出了一个非常经典的结构化定义:
Agent = 大模型(LLM)+ 规划(Planning)+ 记忆(Memory)+ 工具使用(Tool Use)
图:LLM驱动的自主代理系统(OpenAI)
(1)LLM(大模型):作为代理的大脑,负责理解问题、生成响应;
(2)规划(Planning):
子目标和分解:智能体将大任务分解为更小、更易管理的子目标,从而高效地处理复杂任务。
反思与改进:智能体可以对过去的行动进行自我批评和反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。
(3)记忆(Memory):
短期记忆:将所有上下文学习视为利用模型的短期记忆进行学习。
长时记忆:这为智能体提供了在长时间内保留和回忆(无限)信息的能力,通常通过利用外部向量存储和快速检索来实现。
(4)工具使用(Tool Use):
代理学习调用外部API以获取模型权重中缺失的额外信息(通常在预训练后难以更改),包括当前信息、代码执行能力、访问专有信息源等。
这四个模块共同构成了一个由大语言模型(LLM)作为核心控制器构建的智能体Agent系统。LLM 的潜力不仅限于生成文笔优美的文章、故事、论文和程序,它还可以构建一个强大的通用问题解决者。
✅复旦大学 NLP 团队的定义:Agent = 感知 + 大脑 + 行动
复旦大学自然语言处理团队则从更宏观的角度出发,将 Agent 分为三个主要模块:
(1)感知模块:接收来自环境的信息(如语音、图像、文本);
(2)大脑模块:进行记忆存储、逻辑推理、决策判断;
(3)行动模块:执行操作、调用工具、影响外部世界。
举个例子:
当你问:
“明天会不会下雨?”
-
感知模块将语音转换为文本;
-
大脑模块结合当前时间和历史数据进行推理;
-
行动模块调用天气API获取信息,并反馈给你是否需要带伞。
图:感知、大脑、行动分解的Agent定义(复旦NLP)
二、重新定义网络安全智能体(AI Agent)
通过前文对智能体的剖析,想必大家已对智能体有了充分认知。回到本文开头提及的各大安全公司推出的安全垂域大模型,大家或许仍有一个疑问:安全垂域大模型(LLM)与智能体(Agent)究竟存在怎样的关系?
安全垂域大模型与智能体的关系可看作“大脑”与“执行者”的协同体系。其中,安全垂域大模型作为底层技术基座,借助海量安全语料训练以及专业攻防逻辑学习,为智能体赋予感知、决策与执行能力;而智能体则依靠大模型的能力,在具体场景中动态拆解任务、调用工具,并实现闭环响应。
因此,智能体是“大模型(LLM)+行动能力”的有机综合体。通俗来讲,智能体一般包含大模型(LLM),且大模型是智能体的核心组件。各大网安厂商推出的安全垂域大模型,本质上就是安全智能体,因其符合从感知、规划到最终行动调用一系列工具以达成特定结果的逻辑。套用OpenAI的智能体框架,基于LLM驱动的网络安全智能体框架图如下:
图:基于LLM驱动的网络安全智能体(双安智库定义)
双安智库对网络安全智能体的定义为:这是一种在数字空间对抗中具备自主进化能力的认知型防御体系。其核心在于构建动态对抗智能体(Dynamic Adversarial Agent)架构,进而塑造出拥有多维度感知、策略博弈和认知反制能力的数字防御生命体。与传统自动化防御系统相比,网络安全智能体的关键突破点在于构建了 “感知 - 推理 - 决策 - 执行” 的闭环智能体系,能够在攻击链的各个环节,利用强化学习算法实时进行博弈推演,动态生成最优化的防御策略。
网络安全智能体的构建主要涵盖以下四个层面:
- 感知层:全维度数据采集与标准化处理
智能体借助分布式传感器网络,实时采集网络流量、系统日志、终端行为等原始数据,并接入威胁情报源获取结构化情报。通过基于知识图谱的语义解析引擎,对各类异构数据进行清洗和归一化处理,同时运用时序特征提取技术构建多维数据立方体,形成具有时空关联特性的基础数据池。
- 推理层:深度特征建模与威胁认知构建
基于多模态特征融合框架(MFF),智能体利用深度语义解析引擎(DSEE)对网络行为特征进行分层抽取,构建出具备时空关联的三维威胁图谱。创新性地采用对抗性知识蒸馏技术,实现专家经验与机器学习模型的双向知识迁移,从而构建可解释的复合推理模型。在 APT 攻击识别场景中,推理引擎运用 MITRE ATT&CK 战术链回溯算法,深入解析攻击者的战术意图。
- 决策层:多模态推理与博弈策略生成
智能体融合符号推理引擎与深度强化学习框架,打造 “规则驱动 + 数据驱动” 的双轨决策系统。在战术层面,通过攻击链建模技术识别 APT 攻击路径,并运用马尔可夫决策过程(MDP)推演攻击者意图;在战略层面,基于博弈论构建攻防态势评估模型,动态生成包含阻断、诱捕、溯源等策略的处置方案。决策系统内置的可信 AI 模块会实时验证策略合理性,确保决策符合最小权限原则和合规要求。
- 执行层:自适应响应与持续进化机制
通过安全能力中台,智能体可与 SIEM、EDR、FW 等 20 余类安全产品(工具)实现 API 级联动,针对不同事件和处置对象自动推荐处置动作,自动触发威胁研判、告警解读、IP 封禁、报告生成等响应预案,实现分钟级响应处置闭环。通过构建双向增强学习回路,将安全专家反馈与处置效果数据实时注入知识图谱,并借助群体智能优化算法实现防御策略的迭代升级。在高级别攻防演练中,该体系能将平均响应时间压缩至分钟级,最终形成 “感知 - 认知 - 决策 - 行动” 的闭环智能防御生态。
在网络安全智能体架构里,记忆模块与规划模块是实现自主决策的核心组件。二者相互协作,使智能体能够模拟人类专家 “积累经验 - 分析问题 - 制定策略” 的过程。接下来,我将详细阐述短期记忆与长期记忆在记忆模块中的应用和作用,以及反馈、自适应进化(监督评估)、思维链、子目标拆解在规划模块中的具体运用。
1、记忆
(1)短期记忆(STM)
短期记忆通常用于存储即时的、暂时性的信息,例如实时缓存当前任务相关的动态数据(如正在分析的攻击日志流、临时提取的IoC指标),相当于安全分析师的“工作记忆区”。它使得智能体能够快速响应环境变化,并对紧急情况做出及时反应。短期记忆的内容通常是短暂的,可能只持续到任务完成或者一段时间后被覆盖。
应用场景:
- 威胁狩猎实时关联场景
当检测到某主机异常外连行为时,短期记忆可临时存储近30分钟内的网络流量元数据、进程调用链,用于实时交叉验证攻击链条。
- API调用上下文保持场景
在执行多工具协同任务(如先调用EDR查杀,再联动防火墙阻断)时,短期记忆暂存中间状态数据,避免重复查询。
(2)长期记忆(LTM)
长期记忆则用于保存那些需要长时间保留的信息,如存储经过验证的结构化知识(如历史攻击模式、有效处置方案、漏洞特征库),采用向量数据库实现语义检索。长期记忆帮助智能体学习并积累经验,以便在未来遇到类似问题时可以更快地做出决策。它支持智能体进行更深层次的分析,比如识别出复杂的攻击模式或预测潜在威胁。
应用场景:
- APT攻击模式匹配场景
将新型勒索软件行为与长期记忆中存储的Conti/LockBit攻击链模板比对,识别出80%相似度的“文件加密前系统快照删除”特征行为。
- 处置方案复用场景
当检测到Log4j漏洞利用尝试时,自动调取长期记忆中已验证的处置方案:
1.阻断攻击源IP → 2. 扫描受影响主机→ 3. 注入临时补丁
- 记忆协同场景
检测到可疑PowerShell命令时:
-
STM(短期记忆)缓存当前进程树及命令行参数
-
LTM(长期记忆)检索历史记录发现该命令与PowerShell Empire攻击框架相似度92%→ 触发高危告警并自动隔离主机。
2、规划
(1)反馈
在规划过程中,反馈机制允许智能体根据执行结果调整其行为,通过这种方式,智能体可以不断优化自己的策略,提高应对威胁的效率。例如,在实施了某个防御措施后,智能体会收集关于该措施效果的数据。如智能体初始误判正常运维脚本为恶意,经反馈机制:
1.人工标记误报样本
2.强化学习模块调整行为模型
3.长期记忆新增“合法运维特征”知识
→ 同类误报减少80%以上。
图:反馈循环闭环学习流程图
(2)自适应进化(监督评估)
自适应进化是实现动态防御能力的核心引擎。它通过持续的环境反馈和策略优化,使智能体具备类似生物进化的适应能力。其技术机制如下图所示:
图:闭环反馈驱动策略机制
评估维度可包括:
- 威胁检出率(如勒索软件识别准确率)
- 业务影响分(处置动作导致的业务中断时长)
- 资源消耗比(CPU/内存占用率)
如:当阻断动作导致核心业务延迟>200ms时,自动降级为告警不处置。
(3)思维链
思维链是指智能体在解决问题时的一系列逻辑步骤,它强调将复杂的思考或问题解决分解成一系列相互关联、有逻辑顺序的小步骤,就像链条上的一个个环一样紧密连接,通过多步推理生成决策路径,避免单步判断失误。如:我们再问DeepSeek一些问题,在生成结果前的深度思考(逐步展示其推理过程)就是构建思维链的过程。它可以用于复杂问题的分解和解决过程记录。有助于智能体理解问题的本质,并系统地探索解决方案。这对于处理网络安全中的复杂攻击尤其重要,因为攻击往往涉及多个层面和步骤。
例:判断某加密流量是否恶意
步骤1:解密失败率>95% → 疑为恶意混淆
步骤2:TLS证书有效期异常→ 符合Cobalt Strike特征
步骤3:目标IP在威胁情报库中→ 确认为C2通信
(4)子目标拆解
当面临一个大型或复杂的目标时,目标拆解技术可以将大目标细分为一系列小目标或子任务。这样做可以让智能体更有条理地工作,逐步实现最终目标。
示例1:将抽象安全目标(如“遏制勒索软件传播”)分解为可执行子任务链:
定位初始入侵点→ 阻断C2通信→ 隔离感染主机→ 修复漏洞
示例2:遭遇钓鱼邮件攻击后,智能体自动生成任务链:
三、网络安全多智能体(Multi-AI Agent)
当单一智能体的能力存在局限时,多智能体协同就成为必然之选。该技术借助多个专业智能体的分工合作,打破了传统渗透测试对人工经验的依赖以及高误报率等局限。
双安智库对网络安全多智能体的定义为:它是由多个具备自主决策能力的智能体(AI Agent)组成的分布式协同防御体系。这些智能体以大语言模型(LLM)或生成式AI技术为基础,能够感知网络安全环境、独立分析威胁、动态规划任务,并且通过标准化通信机制实现跨功能协作,共同完成威胁检测、漏洞修复、身份验证、攻击溯源等复杂的安全任务。基于LLM驱动的网络安全多智能体框架图如下:
图:基于LLM驱动的网络安全多智能体(双安智库定义)
当前,各大网络安全头部企业以 LLM 大模型为基础,在 AI+SOC(安全运营中心)的业务应用层面,构建了涵盖告警研判、恶意样本分析、钓鱼邮件检测、事件调查、漏洞评估及流量分析等多个领域的智能体。这些智能体通过 MCP 协议等标准化通信协议,实现高效协同运作。多智能体系统的显著优势在于,它能够将复杂的网络安全任务拆解为多个子任务,交由具备不同专业能力的智能体分别处理,最终形成一套完整的协同防御解决方案。为实现有效协作,这些智能体通常会采用以下协作机制:
-
信息共享与同步机制:各智能体之间需要频繁地交换信息并同步状态。例如,当告警研判智能体监测到异常网络活动时,会将可疑文件发送给恶意样本分析智能体做进一步检测,同时告知钓鱼邮件智能体排查相关邮件是否存在钓鱼风险。一旦威胁得到确认,事件调查智能体便会介入,对事件展开全面深入的调查。
-
工作流编排机制:借助预先设定的工作流程或执行剧本(Playbook),能够自动触发一系列响应动作。具体而言,当检测到潜在网络攻击时,告警研判智能体会依据预设逻辑启动相应的处置程序,包括调用恶意样本分析智能体进行详细分析,或指令钓鱼邮件智能体封禁可疑来源。
-
协同决策支持机制:智能体可共同参与决策过程,凭借各自的专业优势提供综合性建议。在应对复杂的 APT 攻击时,多个智能体可能会联合对相关证据进行评估,共同生成全面的风险评估报告,并制定联合应对策略。
-
实时反馈循环机制:在执行任务过程中,智能体需要具备接收实时反馈并据此调整行为的能力。例如,若事件调查智能体发现新型攻击模式,会立即更新知识库,并通知其他智能体同步调整检测规则。
-
安全与隐私保护机制:在整个协作过程中,数据传输安全和用户隐私保护至关重要。为此,系统采用加密技术及其他安全防护措施,确保智能体之间的通信不会遭受窃听或篡改。
网络安全多智能体系统的出现,标志着网络安全防御模式从传统的 “被动规则匹配” 向 “主动 AI 驱动” 转变。其核心在于通过分布式智能和协作学习,构建具有自适应能力的 “数字免疫系统” 。
四、网络安全智能体在AI+SOC中的具体应用
AI与SOC(安全运营中心,Security Operations Center)相融合,将人工智能技术与传统SOC功能相结合,其目的在于提升威胁检测与响应的效率。网络安全智能体在AI+SOC中的具体应用主要体现在以下方面:
1. 自动化威胁检测
网络安全智能体能够借助机器学习算法,对网络流量、日志数据等信息进行实时分析,从而自动识别潜在的安全威胁。比如,通过模式识别技术发现异常行为或已知攻击模式,并且能够不断学习以适应新型威胁。
- 传统防御:依赖静态规则库,误报率超过30%,新型威胁检出率不足50%。
安全智能体:
- 增效机制:基于深度学习实时分析行为模式(像文件熵值、进程链异常等),并结合生成对抗网络(GAN)识别未知威胁。
- 成效:某安全厂商安全GPT的检出率从45.6%提升至95.7%,误报率从21.4%降至4.3%。
2. 智能告警管理
智能体可以对来自不同来源的安全告警进行优先级排序和分类,降低误报率,确保真正的威胁能够及时得到关注。它们能够依据历史数据和上下文信息,评估告警的真实性和紧急程度。
- 传统防御:日均处理万级告警,人工筛选耗时较长,40%的告警存在漏检情况。
安全智能体:
- 增效机制:多智能体协同实现告警聚合、去重以及优先级排序(例如数据摄取代理+上下文收集器代理),并自动关联ATT&CK框架进行分类。
- 成效:告警处理量提升了10倍,人工干预减少了70%。
3. 威胁情报集成
网络安全智能体能够整合不同威胁情报源的数据,提供更全面的威胁视图,这有助于SOC团队更快地了解威胁环境,并采取相应的防御措施。
- 传统防御:情报更新滞后,手动录入效率低下,跨平台共享困难。
安全智能体:
- 增效机制:自动抓取全球威胁情报(如C2域名、漏洞特征等),通过知识蒸馏技术压缩存储,并实时同步至LTM(长期记忆)库。
- 成效:某安全厂商集成DeepSeek后,威胁情报分析速度提升了50%,运营成本降低了30%。
4. 安全事件响应
当检测到安全事件时,智能体可以自动化执行预定义的响应策略,如隔离受影响的系统、更新防火墙规则或通知相关人员,这种快速响应能力对于限制损害至关重要。
- 传统防御:平均响应时间为42分钟,依赖人工剧本执行。
安全智能体:
- 增效机制:任务令牌驱动多智能体接力(如调查代理→响应代理),自动执行“阻断IP→隔离主机→修复漏洞”的闭环流程。
- 成效:某安全厂商XDR+智能体将响应时间从天级压缩至分钟级,效率提升了90%。
5. 攻击链还原
智能体可以通过收集和分析多维度的数据来重建攻击链,帮助安全分析师更好地理解攻击过程,并为未来的防护策略提供参考。
- 传统防御:碎片化日志难以关联,攻击路径还原依赖专家经验。
安全智能体:
- 增效机制:结合ATT&CK矩阵可视化攻击链路,STM(短期记忆)缓存实时证据链,LTM(长期记忆)匹配历史APT模板。
- 成效:某赛事智能体集群主动关闭了152个高危端口,并反向植入追踪程序。
6. 持续监控与分析
AI驱动的智能体能够实现7×24小时的持续监控,无需人工干预即可处理大量数据,进而提高监控的覆盖率和深度。
- 传统防御:人工轮班成本高,夜间覆盖率不足。
安全智能体:
- 增效机制:7×24小时异步流水线监控,采用滑动窗口注意力机制动态保留关键事件。
7. 报告与可视化
智能体可以生成详细的报告,并将复杂的安全数据转化为易于理解的可视化图表,使非技术人员也能快速掌握当前的安全状况。
- 传统防御:手动编写报告,耗时且容易出错。
安全智能体:
- 增效机制:自然语言生成(NLG)自动输出溯源报告,支持多维度视图(时间轴/关系网)。
- 成效:分析报告生成时间从小时级缩短至秒级,准确率提升了40%。
8. 知识共享与学习
在AI+SOC环境中,多个智能体可以相互协作,共享知识和经验,共同提升整体的安全防护水平。此外,智能体还能从每次事件中学习,逐步优化其决策模型。
- 传统防御:经验沉淀缓慢,跨团队存在知识孤岛。
安全智能体:
- 增效机制:联邦学习共享蒸馏知识(如恶意样本分析权重0.6),通过反馈循环优化策略。
- 成效:某科技公司实测显示,威胁检测速度提升了40%,误报减少了87%。
五、总结
安全防御的终极形态正在显现。当攻击者利用AI发动更复杂攻击时,安全智能体通过规划模块(目标拆解+思维链)将复杂任务分解为子链可在分钟级或秒级内完成自动化响应,整体效率提升90%以上。
未来五年,没有网络安全智能体的防御体系或许将是形同虚设。据Gartner预测,到2027年70%的中大型企业将部署此类多智能体系统。当每个智能体如同特种部队成员般各司其职又紧密协同时,网络防御正式进入“智能体集群作战”的新纪元。
这场由单点防御到群体智能的安全革命才刚刚开始。当安全智能体成为数字世界的标准免疫系统时,我们迎来的将是一个更安全、更自主、更智能的网络空间新时代。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。