大模型有望重塑证券行业生态,在投资银行、财管管理、机构交易等领域为证券公司带来新的业务增长点。
例如,在投行业务领域,可以利用大模型的数据关联能力,穿透各种指标,识别因果关系,为业务加强风险防范保障;利用大模型的生成能力,辅助编写尽调报告、招股书等;在财富管理领域,大模型可以学习客户经理、研究员、投资顾问的能力,成为客户私人定制的财富顾问。
目前,头部证券公司均在积极探索大模型应用。沙丘智库长期跟踪调研大模型技术的发展,旨在帮助企业快速了解大模型最新、最全面的落地情况。沙丘智库通过研究中信证券、广发证券、银河证券、中金公司、山西证券、申万宏源等证券公司在大模型领域的应用探索,旨在为其他证券公司大模型应用提供参考。
▎案例1:中信证券债券智能助手Bond Copilot
中信证券基于大模型技术,推出了债券智能助手Bond Copilot,全方位支持债券承揽、承做、承销三大环节以缓解投行债券全链条工作的痛点,提升效率、优化流程、控制风险、优化客户体验,快速响应投资者关心问题。
Bond Copilot 全方位提升投行工作效率,提供可视化图表输出、多轮交互连续问答、高准确率&数据隐私保证等能力。随着技术的不断进步和应用场景的不断拓展,下阶段Bond Copilot将为证券行业带来更多的业务赋能,实现对债券领域业务场景的全面覆盖,并扩展到基金、股票等其它金融产品,为证券业务搭配独一无二的智能助手。
▎案例2:广发证券企业财务预警场景的大模型应用
随着企业财务舞弊的动机、手段呈现多样化、复杂化趋势,传统财务风险模型过度依赖财报等低频数据,存在样本不均衡、模型性能不足等难题,无法满足广发证券企业财务风险预警的业务需求。
广发证券基于大模型构建企业财务风险预警模型,识别人工难以识别的潜在风险,降低项目审核、尽调、投研成本,提高工作效率,且与传统专家规则模型、机器学习模型相比,精度更高、效果更好。目前,企业财务智能预警平台已经覆盖广发证券投行、风控、投资自营、财富管理等多个业务条线。
完整内容:广发证券企业财务预警场景的大模型应用
▎案例3:银河证券机构业务领域大模型应用
在机构业务展业过程中,银行证券基于大模型实现自动询报价与智能文档问答服务,提升对客服务效率,优化机构客户满意度。本案例通过介绍银河证券在机构业务领域的大模型应用,为其他证券公司提供参考。
完整内容:银河证券机构业务领域大模型应用
▎案例4:中金公司代码大模型实践
中金公司从开发人员的角度找到迫切想要解决的问题,在不影响开发人员工作效率的同时为开发人员带来增量服务,提高开发效率,最终确定代码审核、单元测试、代码翻译三个落地场景,这些场景的共同特点是耗时长、效率低,对开发有一定阻碍,且一线人员对这类工作比较反感。
针对上述三个场景,中金公司进行了技术验证和落地:
完整内容:中金公司代码大模型实践
▎案例5:山西证券大模型应用实践
山西证券于2023年3月启动大模型研究,经过对大模型厂商的充分调研与开源大模型部署,逐步启动大模型在固收、合规领域的探索。
例如在合规领域,山西证券内部已建立合规宝典(合规知识库)用于员工开展合规作业,将本地知识库变成问答应用。
通过结合人工智能大模型,进行证券合规知识训练后,可为证券从业人员提供一个合规方面的智能问答机器人,在提升从业人员合规知识储备的同时节省大量文档检索时间,提升合规问答的精度和准确度,大幅提高工作效率,助力证券行业的合规智能化。
完整内容:山西证券大模型应用实践
▎案例6:申万宏源智能研报降维服务
研报内容通常结构复杂、格式多样,且每日更新的数据量较大,专业人员人工提取关键信息的成本较高,而非专业人员要理解研报内容有一定困难,导致目前研报信息使用效率较低,研报价值无法充分发挥。
申万宏源证券基于传统算法与大模型训练相结合的方式,实现了研报自动化智能降维解读。目前,智能研报降维服务已在申万宏源证券的一站式服务平台上线,为MOT(关键事件管理系统)、公司详情、行业详情、经济解读、债券解读、配置策略、热门板块等多个场景提供支持。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
