四元数,欧拉角,旋转矩阵,旋转向量

本文介绍了欧拉角在三维旋转中的表示及其问题,如万向锁,以及四元数和旋转向量作为替代方案的使用方法,包括Python库scipy和pyquaternion的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

四元数,旋转矩阵,旋转向量,欧拉角

一、欧拉角

1、欧拉角是表达旋转的最简单的一种方式,形式上它是一个三维向量,其值分别代表物体绕坐标系三个轴(x,y,z轴)的旋转角度,默认旋转正向为逆坐标轴逆时针方向。

2、在旋转过程中,xyz轴方向并不是固定不变的,而是随着前面的旋转而改变。比如如果绕 x 轴旋转 90 度,那么旋转后的 y 轴正向将指向原始的 z 轴方向,而旋转后的 z 轴正向将指向 y 轴负向。由此可以看出,欧拉角对应的具体旋转与 xyz 轴的旋转顺序是有关的,相同的 xyz 旋转角度,如果按 xyz 的顺序进行旋转使用按 zyx 的顺序进行旋转,得到的结果是不一致的。

3、在具体应用中,xyz 轴朝向不固定,需要具体情况具体分析。

  1. pitch:绕 x 轴旋转,
  2. yaw:绕 y 轴旋转,
  3. roll:绕 z 轴旋转,

4、欧拉角表示最大的问题是存在万向锁问题。万向锁(Gimbal lock)是在使用动态欧拉角表示三维物体的旋转时出现的问题。一旦选择±90°作为pitch角,就会导致第一次旋转和第三次旋转等价,整个旋转表示系统被限制在只能绕竖直轴旋转,丢失了一个表示维度。

二、四元数

四元数通过四个实数描述三维旋转,q=w+ix+jy+kz,其中 w^2+x^2+y^2+z^2=1

三、旋转向量

旋转向量用一个三维向量来表示三维旋转变换,该向量的方向是旋转轴,其模则是旋转角度。

转换方法

一、scipy.spatial.transform.Rotation

官方文档:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html#scipy.spatial.transform.Rotation

from scipy.spatial.transform import Rotation as R

# 从四元数加载
r = R.from_quat([0, 0, np.sin(np.pi/4), np.cos(np.pi/4)])

# 从旋转矩阵加载
r = R.from_matrix([[0, -1, 0],
                   [1, 0, 0],
                   [0, 0, 1]])

# 从旋转向量加载
r = R.from_rotvec(np.pi/2 * np.array([0, 0, 1]))

# 从欧拉角加载
r = R.from_euler('zyx', [
[90, 0, 0],
[0, 45, 0],
[45, 60, 30]], degrees=True)

# 使用四元数表示
r.as_quat()

# 使用旋转矩阵表示
r.as_matrix()

# 使用旋转向量表示
r.as_rotvec()

# 使用欧拉角表示
r.as_euler('zyx', degrees=True)


# 取逆
inv_r = r.inv()

# 对点进行旋转
r.apply(v)

二、pyquaternion.Quaternion

官方文档:https://kieranwynn.github.io/pyquaternion/

r = Quaternion([w, x, y, z]).rotation_matrix

旋转矩阵和平移向量的特殊操作

如果给定 A2B 的旋转矩阵和平移向量,但是需要 B2A 的旋转矩阵和平移向量,可以如此操作:

R_B2A = np.linalg.inv(R_A2B)
T_B2A = -np.dot(R_A2B, T_A2B)

### 欧拉角旋转矩阵四元数的关系 欧拉角旋转矩阵以及四元数都是用来描述三维空间中的旋转的不同方式。每种表示方法都有各自的优点,在不同的应用场景中有特定的选择。 #### 欧拉角旋转矩阵的转换 当给定一组按照一定顺序(比如Z-X-Z, X-Y'-X''等)定义的三个角度θx, θy 和 θz作为欧拉角时,可以构建相应的旋转矩阵R: \[ R = R_z(\theta_z) \cdot R_y(\theta_y) \cdot R_x(\theta_x)\] 其中\(R_x\), \(R_y\) 和 \(R_z\)分别代表绕着各自轴线的角度旋转变换[^2]。 对于具体的计算过程来说,如果已知某物体相对于固定参照系的姿态由这三个连续转动组成,则可通过上述公式得到该姿态所对应的旋转矩阵形式。 #### 四元数旋转矩阵间的相互转化 四元数q=(w,x,y,z),这里w是实部而(x,y,z)构成虚部向量v;它同样能够表达一个刚体在三维空间内的定向状态。从四元数转成标准3×3阶正交阵(即旋转矩阵): \[ R=\begin{bmatrix} 1-2(y^{2}+z^{2}) & 2(xy-wz) & 2(xz+wy) \\ 2(xy+wz) & 1-2(x^{2}+z^{2})& 2(yz-wx)\\ 2(xz-wy) & 2(yz+wx) & 1-2(x^{2}+y^{2}) \end{bmatrix} \] 反之亦然,可以从任意有效的旋转矩阵推导出唯一的单位长度四元数来表示相同的旋转操作[^4]。 #### 使用Eigen库实现转换 以C++编程环境为例,利用流行的线性代数模板库——Eigen,可以直接调用内置函数完成这些变换工作。例如要将四元数对象`Quaterniond q(w,x,y,z)`转化为旋转矩阵: ```cpp #include <iostream> #include <Eigen/Dense> using namespace Eigen; int main(){ Quaterniond q(0.7071, 0, 0.7071, 0); // 定义一个四元数 Matrix3d m; m=q.toRotationMatrix(); // 将其转换为旋转矩阵m } ``` 以上就是关于如何理解并处理这三种常用的空间旋转表述之间联系的主要内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值