常见的函数求导公式以及复合函数的求导公式

常见的函数求导公式以及复合函数的求导公式(链式法则)。

常见函数的求导公式

  1. 常数函数

    \frac{d}{dx}(c) = 0(c 为常数)
  2. 幂函数

    \frac{d}{dx}(x^n) = nx^{n-1}(n 为任意实数)
  3. 指数函数

    \frac{d}{dx}(e^x) = e^x            \frac{d}{dx}(a^x) = a^x \ln(a) \quad (a > 0)
  4. 对数函数

    \frac{d}{dx}(\ln(x)) = \frac{1}{x} \quad (x > 0)             \frac{d}{dx}(\log_a(x)) = \frac{1}{x \ln(a)} \quad (x > 0, a > 0, a \neq 1)
  5. 三角函数

    \frac{d}{dx}(\sin(x)) = \cos(x)                                                                                                              \frac{d}{dx}(\cos(x)) = -\sin(x)                                                                                                         \frac{d}{dx}(\tan(x)) = \sec^2(x)                                                                                                           \frac{d}{dx}(\csc(x)) = -\csc(x)\cot(x)                                                                                             \frac{d}{dx}(\sec(x)) = \sec(x)\tan(x)                                                                                                 \frac{d}{dx}(\cot(x)) = -\csc^2(x)
  6. 反三角函数

    \frac{d}{dx}(\arcsin(x)) = \frac{1}{\sqrt{1-x^2}} \quad (-1 < x < 1)                                                                           \frac{d}{dx}(\arccos(x)) = -\frac{1}{\sqrt{1-x^2}} \quad (-1 < x < 1)                                                                       \frac{d}{dx}(\arctan(x)) = \frac{1}{1+x^2}

复合函数的求导公式(链式法则)

如果y = f(g(x)),则其导数为:

\frac{dy}{dx} = f'(g(x)) \cdot g'(x)

示例

  1. 求导示例

    • 对于y = \sin(x^2),我们可以使用链式法则:
    \frac{dy}{dx} = \cos(x^2) \cdot (2x) = 2x \cos(x^2)
  2. 对数与指数的组合

    • 对于 y = e^{\sin(x)},使用链式法则:
    \frac{dy}{dx} = e^{\sin(x)} \cdot \cos(x)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值