GCN与图谱理论(一):信号的正交分解 与 傅里叶变换

零、回顾信号的正交分解与傅里叶变换

要深入理解图网络与图谱理论,就需要先对谱理论深刻理解,本节从正交分解出发,回顾傅里叶变换的相关内容

以往知识传送门:

完备正交集,函数/信号的正交分解

傅里叶级数(Fourier Series)

傅里叶变换、傅里叶变换的推导(Continuous Time Fourier Transform)

一、 回顾广义傅里叶级数的相关理论:

所谓级数就是无限项的数列求和的函数,广义傅里叶级数做的事情就是把任意信号表示成无限个基信号的和

广义傅里叶级数:

任何一个信号f(t)都能在区间(t1,t2)内精确表示成完备正交函数集中函数的线性组合,即:

f(t)=\sum_i C_i\phi_i(t), t\in(t_1,t_2)

其中Ci为加权系数,其值为:

C_i=\frac{\int_{t_1}^{t_2}f(t)\phi_i^*(t)\rm dt}{\int_{t_1}^{t_2}\phi_i(t)\phi_i^*(t)\rm dt}

其中Ci就是广义傅里叶级数的傅里叶系数。

回忆投影公式,向量b在向量a上的投影可以用向量积的方式表示:

b_a=\frac{\textbf{b}\cdot \textbf{a}}{\left | \textbf{b} \right |}

即用向量的积除以投影向量的模长表示投影,而傅里叶展开就相当于将信号f(t)投影在完备正交函数集的各个函数上

 

二、傅里叶级数

(一)中给出了广义傅里叶级数的系数的表达式,本节给出两个最常用的完备正交函数集,以此构成广义傅里叶级数。

※若选用三角函数集,那么广义傅里叶级数可写作:

f(t)=\frac{a_0}{2}+\sum_{n=1}^{\infty}a_n\cos(n\Omega t)+\sum_{n=1}^{\infty}b_n\sin(n\Omega t)

其级数的表达式为:

其系数为:

※若选用指数函数集,那么广义傅里叶级数可写作:

f(t)=\sum_{n=-\infty}^{\infty} F_ne^{jn\Omega t}

其傅里叶系数为:

F_n=\frac{\int_{t_0}^{t_0+T}f(t)(e^{jn\Omega t})^*\rm dt}{\int_{t_0}^{t_0+T}e^{jn\Omega t}(e^{jn\Omega t})^*\rm dt}=\frac1T\int_{t_0}^{t_0+T}f(t)e^{-jn\Omega t}\rm dt

以上两种广义傅里叶级数都称为傅里叶级数

同样利用投影的思想,因为这两种“基函数”的模都是1,函数在其上的投影相当于直接与其相乘,据此,傅里叶级数的表达式更容易记忆

 

三、傅里叶变换

傅里叶级数是无穷项函数的加和,是离散的,这节我们从离散的傅里叶级数推导到连续的傅里叶变换。

当周期信号的周期T趋于无穷大,那么此时因为

\frac1T=\frac{\Omega}{2\pi}

Ω代表谱线的间隔,趋于无限小,那么离散变为连续:求和变积分、Ω变dω、nΩ变ω。那么傅里叶级数和其系数变为:

            ①

                                  ②

①式称为傅里叶变换,②式称为傅里叶反变换

 

傅里叶变换是傅里叶级数的连续形式,其本质还是函数在基函数的投影

傅里叶级数表示,信号可由无穷个傅里叶系数乘以基函数的加和表示,基函数的变量是离散变量n,n∈Z。

傅里叶变换表示(②式),信号可由频谱对频率ω在-∞到∞的积分,基函数的变量是连续变量ω,ω∈(-∞,∞)。

 

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值