Ultralytics 框架通过 动态模型加载与解析机制 实现了对多种任务模型(检测、分割、姿态估计等)的统一支持,其核心在于根据输入参数(模型文件类型、任务定义等)自动适配网络结构、损失函数及后处理逻辑。以下是该机制的深度解析与使用指南:
一、动态模型加载机制
1. 文件类型驱动的模型初始化
Ultralytics 的 YOLO
类通过文件扩展名自动判断模型类型,并初始化对应的模型实例:
文件类型 | 处理逻辑 |
---|---|
.pt (PyTorch) |
加载预训练权重,并根据权重中存储的 task 元数据(如 detect /segment )初始化对应任务模型。 |
.yaml (配置) |
解析 YAML 文件定义的结构(如 backbone /head ),构建未训练的新模型。 |
.onnx /.engine |