Ultralytics 框架中动态模型加载与解析

Ultralytics 框架通过 ​动态模型加载与解析机制 实现了对多种任务模型(检测、分割、姿态估计等)的统一支持,其核心在于根据输入参数(模型文件类型、任务定义等)自动适配网络结构、损失函数及后处理逻辑。以下是该机制的深度解析与使用指南:


一、动态模型加载机制

1. ​文件类型驱动的模型初始化

Ultralytics 的 YOLO 类通过文件扩展名自动判断模型类型,并初始化对应的模型实例:

文件类型 处理逻辑
.pt (PyTorch) 加载预训练权重,并根据权重中存储的 task 元数据(如 detect/segment)初始化对应任务模型。
.yaml (配置) 解析 YAML 文件定义的结构(如 backbone/head),构建未训练的新模型。
.onnx/.engine
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值