YOLOV8中的C2f模块是一个重要的组成部分,它在目标检测任务中起到了关键作用。以下是对YOLOV8 C2f模块的详细解析:
一、C2f模块的结构与工作原理
C2f模块采用了Bottleneck的设计理念,这意味着它在某个维度上将特征图分成了两部分。这种设计有助于提高模型的非线性表示能力,从而更好地处理复杂的图像特征。具体来说,C2f模块的结构和工作原理如下:
- 输入特征图:C2f模块的输入特征图通常来自主干网络(如CSPDarknet53)的输出或其他卷积层的输出。
- 第一个卷积层(cv1):输入特征图首先通过第一个卷积层进行变换,生成中间特征图。
- 特征图拆分:生成的中间特征图被拆分成两部分。一部分直接传递到最终的Concat块,另一部分传递到多个Bottleneck块进行进一步处理。
- Bottleneck块:输入到这些Bottleneck块的特征图通过一系列的卷积、归一化和激活操作进行处理。每个Bottleneck块都包含两个卷积层,这些卷积层对输入特征图进行变换,提取出更高级别的特征表示。
- Concat块:经过Bottleneck块处理的特征图与直接传递的那部分特征图在Concat块进行拼