一、PTQ中的精度补偿机制
PTQ(Post-Training Quantization,训练后量化)的精度补偿机制旨在减少量化导致的精度损失,核心方法包括以下四类:
补偿机制 | 技术原理 | 典型方法 |
---|---|---|
动态校准与敏感层优化 | 通过校准数据集调整量化参数(如缩放因子/零点),定位并保护敏感层(如Attention权重)。 | - 逐层KL散度校准 - 离群值检测(Emergent Features) |
数学等效变换 | 通过数学变换均衡权重和激活的量化难度,降低整体误差。 | - SmoothQuant(激活-权重量化均衡) - 通道分离(Channel Splitting) |
误差再分配 | 将量化误差动态分配到对输出影响较小的参数,优先保留关键参数精度。 | - GPTQ(基于Hessian矩阵的误差加权) - AdaRound(自 |