【算能】训练后量化(PTQ)的精度补偿机制

一、PTQ中的精度补偿机制

PTQ(Post-Training Quantization,训练后量化)的精度补偿机制旨在减少量化导致的精度损失,核心方法包括以下四类:

补偿机制 技术原理 典型方法
动态校准与敏感层优化 通过校准数据集调整量化参数(如缩放因子/零点),定位并保护敏感层(如Attention权重)。 - 逐层KL散度校准
- 离群值检测(Emergent Features)
数学等效变换 通过数学变换均衡权重和激活的量化难度,降低整体误差。 - SmoothQuant(激活-权重量化均衡)
- 通道分离(Channel Splitting)
误差再分配 将量化误差动态分配到对输出影响较小的参数,优先保留关键参数精度。 - GPTQ(基于Hessian矩阵的误差加权)
- AdaRound(自
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值