《大模型基础》从语言模型到智能先锋:大语言模型的进化之路(附PDF)

语言模型的起源与发展

语言模型:从基础到前沿的探索

在当今数字化信息爆炸的时代,语言模型作为人工智能领域的关键技术,正以惊人的速度发展和演进。它不仅深刻改变了我们与计算机交互的方式,还在众多领域展现出巨大的应用潜力,从智能客服、机器翻译到内容创作、数据分析等,语言模型的身影无处不在。今天,就让我们一同深入探索语言模型的奥秘,了解它的发展历程、工作原理以及未来的无限可能。

语言模型的发展脉络

语言模型的发展犹如一部波澜壮阔的科技史诗,从最初的基于统计方法的模型,到后来的基于神经网络的模型,每一次的变革都推动着人工智能技术迈向新的高度。

基于统计方法的 n-grams 语言模型

在语言模型发展的早期阶段,基于统计方法的 n-grams 语言模型崭露头角。这种模型的核心思想是通过统计语料库中词序列的出现频率来预测语言符号的概率。例如,对于文本 “长颈鹿脖子长”,bigrams 语言模型会计算 “长颈鹿,脖子” 以及 “脖子,长” 在语料库中出现的频率,进而得出该文本出现的概率。虽然 n-grams 语言模型对未知文本具有一定的泛化能力,但它也存在明显的局限性。当 n 值过大时,容易出现 “零概率” 现象,因为在语料库中很难找到与长 n-gram 一模一样的词序列;而当 n 值过小时,n-gram 又难以承载足够的语言信息,无法准确反映语料库的特性。尽管如此,n-grams 语言模型作为语言模型发展的基石,为后续模型的研究和改进奠定了重要基础。

基于循环神经网络(RNN)的语言模型

随着神经网络技术的兴起,基于 RNN 的语言模型应运而生。RNN 具有独特的环路结构,能够将历史状态循环叠加到当前状态上,从而对历史信息进行有效考虑。在处理词序列时,RNN 可以根据当前词和之前的隐藏状态来预测下一个词的概率。然而,RNN 的训练过程面临着梯度衰减或梯度爆炸的问题,这使得训练变得异常困难。为了解决这些问题,GRU 和 LSTM 等改进型的 RNN 架构引入了门控结构,有效提升了模型的性能和稳定性,成为当时主流的 RNN 网络架构。

基于 Transformer 的语言模型

Transformer 的出现,彻底改变了语言模型的发展格局。它基于注意力机制,能够同时对一定数量的历史状态和当前状态进行加权相加,从而实现对未来状态的精准预测。Transformer 由注意力模块和全连接前馈模块组成,其中注意力模块通过计算 query、key 和 value 之间的关系,实现对输入信息的有效融合;全连接前馈模块则负责对融合后的信息进行进一步处理和记忆。基于 Transformer 的语言模型在自然语言处理任务中表现出了卓越的性能,成为当前语言模型的主流架构。

大语言模型架构探秘

随着数据资源和计算能力的爆发式增长,大语言模型(LLM)应运而生,开启了人工智能的新篇章。大语言模型凭借其庞大的参数量和丰富的训练数据,展现出强大的泛化能力和涌现能力,为我们带来了前所未有的智能体验。

大数据与大模型的协同效应

大数据和大模型的结合,犹如一场化学反应,催生了新智能的涌现。数据规模的增长为模型提供了丰富的信息源,使模型能够学习到多样化的语言模式和深层次的语义关系;而模型规模的不断扩大,则极大地增强了模型的表达能力,使其能够捕捉到更细微的语言特征和复杂的语言结构。在这个过程中,模型对数据分布的拟合能力不断提升,从而在复杂多变的数据环境中表现出更高的适应性和有效性。

为了应对模型规模和数据规模增长带来的计算成本和存储需求挑战,大语言模型的扩展法则应运而生。OpenAI 提出的 Kaplan-McCandlish 扩展法则揭示了模型性能与数据规模、模型规模之间的函数关系,指出在计算预算增加时,模型规模的增长速度应略快于数据规模的增长速度;而 DeepMind 提出的 Chinchilla 扩展法则则强调了数据规模在提升模型性能中的重要性,认为模型规模和数据规模应同步增加,且理想的数据集大小应为模型规模的 20 倍。这些扩展法则为大语言模型的设计和优化提供了重要的指导和参考。

大语言模型的主流架构

当前,大语言模型主要基于 Transformer 框架,演化出了三种经典架构:Encoder-only 架构、Encoder-Decoder 架构和 Decoder-only 架构。

Encoder-only 架构仅使用 Transformer 中的编码器部分,通过接收输入文本生成与上下文相关的特征。在自然语言理解任务中,如情感分析和文本分类,它能够充分利用双向注意力机制,全面捕捉输入序列中的语义和依赖关系,从而做出准确的判断。然而,由于缺乏解码器组件,它在自然语言生成任务中存在一定的局限性。

Encoder-Decoder 架构在 Encoder-only 架构的基础上引入了解码器,通过交叉注意力机制实现编码器和解码器之间的有效交互。这种架构特别适合处理有条件生成任务,如机器翻译、文本摘要和问答系统等。在机器翻译中,编码器将源语言文本转化为上下文表示,解码器则根据这些表示生成目标语言文本,确保输出与输入高度相关且连贯。

Decoder-only 架构则摒弃了编码器部分和交叉注意力模块,仅使用解码器构建语言模型。它利用 “自回归” 机制,在给定上文的情况下生成流畅连贯的下文。在无条件文本生成任务中,如自动故事生成和新闻文章生成,Decoder-only 架构的模型能够凭借大规模预训练数据生成高质量的文本。以 GPT-3、GPT-4 为代表的大型 Decoder-only 语言模型,展现出了强大的任务泛化性能,甚至在某些方面超越了人类的能力。

语言模型的应用与挑战

语言模型在自然语言处理领域的应用广泛而深入,为我们的生活和工作带来了诸多便利。在机器翻译中,它能够快速准确地将一种语言翻译成另一种语言,打破语言障碍,促进国际交流与合作;在文本生成方面,它可以生成新闻报道、故事、诗歌等各种类型的文本,为内容创作提供了新的思路和方法;在智能客服领域,语言模型能够理解用户的问题并提供准确的回答,提高客户服务的效率和质量。

然而,语言模型的发展也带来了一系列挑战。模型的可解释性问题一直备受关注,由于其内部复杂的结构和参数,很难理解模型的决策过程和输出结果的依据;信息安全与隐私问题也不容忽视,在数据收集和使用过程中,如何保护用户的隐私和数据安全成为亟待解决的问题;此外,伦理和公平性问题也引发了广泛的讨论,例如模型可能存在的偏见和歧视,以及对就业市场的影响等。

未来展望

随着技术的不断进步,语言模型的未来充满了无限的可能性。在模型架构方面,我们有望看到更加创新和高效的架构出现,进一步提升模型的性能和泛化能力;在应用领域,语言模型将与更多的行业深度融合,创造出更多的价值,如在医疗、教育、金融等领域的应用将不断拓展和深化;同时,我们也需要积极应对语言模型带来的挑战,加强技术研究和监管,确保其健康、可持续发展。

语言模型的发展是一场激动人心的科技之旅,它见证了人类智慧与创新的力量。让我们共同期待语言模型在未来能够为我们带来更多的惊喜和改变,推动人工智能技术迈向更加辉煌的明天。

大语言模型:新时代的智能引擎

大语言模型架构:开启人工智能新时代

在自然语言处理的前沿领域,大语言模型正以其庞大的模型规模、海量数据的吞吐能力和卓越的模型性能,推动着一场技术革新的浪潮。当我们谈论 “大语言模型” 之大时,所指的不仅仅是模型规模的庞大,也涵盖了训练数据规模的庞大,以及由此衍生出的模型能力的强大。这些模型如同探索未知领域的巨轮,不仅在已有的技术上不断突破性能的极限,更在新能力的探索中展现出惊人的潜力。

截止 2024 年 6 月,国内外已经见证了超过百种大语言模型的诞生,这些大语言模型在学术界和工业界均产生了深远的影响。大语言模型的发展历程可以大致划分为三个阶段。2017 至 2018 年是基础模型的萌芽期,以 Transformer 架构的诞生和 BERT、GPT-1 模型的问世为标志,开启了预训练语言模型的新纪元。2019 至 2022 年是大语言模型的发展期,通过 GPT-2、T5 以及 GPT-3 等模型在参数规模以及能力上的大幅提升,研究者开始深入探索大语言模型的潜力。2022 年起则是大语言模型的突破期,ChatGPT 以及 GPT-4 等模型的发布标志着大语言模型相关技术的显著进步。同时,各大公司和研究机构也纷纷推出了自己的模型,例如百川智能的百川大模型,百度的文心一言等,推动了大语言模型的快速发展。

大数据 + 大模型→能力增强

在数字化浪潮的推动下,数据如同汇聚的洪流,而模型则如同乘风破浪的巨舰。数据规模的增长为模型提供了更丰富的信息源,意味着模型可以学习到更多样化的语言模式和深层次的语义关系。而模型规模的不断扩大,极大地增加了模型的表达能力,使其能够捕捉到更加细微的语言特征和复杂的语言结构。在如此庞大的模型参数规模以及多样化的训练数据共同作用下,模型内在对数据分布的拟合能力不断提升,从而在复杂多变的数据环境中表现出更高的适应性和有效性。

然而模型规模和数据规模的增长并非没有代价,它们带来了更高的计算成本和存储需求,这要求我们在模型设计时必须在资源消耗和性能提升之间找到一个恰当的平衡点。为了应对这一挑战,大语言模型的扩展法则应运而生。这些法则揭示了模型的能力随模型和数据规模的变化关系,为大语言模型的设计和优化提供了宝贵的指导和参考。本章节将深入介绍两种扩展法则:OpenAI 提出的 Kaplan-McCandlish 扩展法则以及 DeepMind 提出的 Chinchilla 扩展法则。

2020 年,OpenAI 团队的 Jared Kaplan 和 Sam McCandlish 等人首次探究了神经网络的性能与数据规模 D 以及模型规模 N 之间的函数关系。他们在不同规模的数据集(从 2200 万到 230 亿个 Token)和不同规模的模型下(从 768 到 15 亿个参数)进行实验,并根据实验结果拟合出了两个基本公式,量化地揭示了数据规模和模型规模对模型能力的重要影响,还指出了在模型规模上的投入应当略高于数据规模上的投入。这一发现不仅为理解语言模型的内在工作机制提供了新的见解,也为如何高效地训练这些模型提供了宝贵的指导意见。

谷歌旗下 DeepMind 团队对 “模型规模的增长速度应该略高于数据规模的增长速度” 这一观点提出了不同的看法。在 2022 年,他们对更大范围的模型规模(从 7000 万到 1600 亿个参数)以及数据规模(从 50 亿到 5000 亿个 Token)进行了深入的实验研究,并据此提出了 Chinchilla 扩展法则。谷歌后续在 2023 年 5 月发布的 PaLM 2 的技术报告中也再次证实了这一观点,进一步强调了数据规模在提升模型性能中的重要性。

大数据 + 大模型→能力扩展

模型训练数据规模以及参数数量的不断提升,不仅带来了学习能力的稳步增强,还为大模型 “解锁” 了一系列新的能力,例如上下文学习能力、常识推理能力、数学运算能力、代码生成能力等。值得注意的是,这些新能力并非通过在特定下游任务上通过训练获得,而是随着模型复杂度的提升凭空自然涌现。这些能力因此被称为大语言模型的涌现能力。

涌现能力往往具有突变性和不可预见性。类似于非线性系统中的 “相变”,即系统在某个阈值点发生显著变化,这些能力也并没有一个平滑的、逐渐积累的过程,而是在模型达到一定规模和复杂度后,很突然地显现。例如,在 GPT 系列的演变中,可以观察到一些较为典型的涌现能力。

上下文学习是指大语言模型在推理过程中,能够利用输入文本的上下文信息来执行特定任务的能力。具备了上下文学习能力的模型,在很多任务中无需额外的训练,仅通过示例或提示即可理解任务要求并生成恰当的输出。在 GPT 系列中,不同版本的模型在上下文学习能力上有显著差异。早期的 GPT-1 和 GPT-2 在上下文学习方面的能力非常有限,通常无法直接利用上下文信息进行准确的推理和回答。GPT-3 的 130 亿参数版本则在上下文学习方面取得了显著进步,能在提供的上下文提示下完成一些常见任务。然而,对于更加复杂或特定领域的任务,其性能仍有限。具有 1750 亿参数的 GPT-3 最大版本以及后续的 GPT-4 模型展现出强大的上下文理解和学习能力,可以基于少量示例完成各类高度复杂的任务。

常识推理能力赋予了大语言模型基于常识知识和逻辑进行理解和推断的能力。它包括对日常生活中普遍接受的事实、事件和行为模式的理解,并利用这些知识来回答问题、解决问题和生成相关内容。GPT-1 和 GPT-2 在常识推理方面的能力非常有限,常常会出现错误的推断或缺乏详细的解释。而 GPT-3 的较大版本能够在大多数情况下生成合理和连贯的常识性回答。至于具有 1750 亿参数的 GPT-3 最大版本以及后续的 GPT-4 等模型,则能够在处理高度复杂的常识推理任务时展现逻辑性、一致性和细节丰富性。

代码生成能力允许大语言模型基于自然语言描述自动生成编程代码。这包括理解编程语言的语法和语义、解析用户需求、生成相应代码,以及在某些情况下进行代码优化和错误修复。GPT-1 和 GPT-2 仅能生成非常简单的代码片段,但是无法有效理解具体的编程需求。130 亿参数的 GPT-3 模型出现时,已经能很好地处理常见的编程任务和生成结构化代码片段,但在极其复杂或特定领域的任务上仍有限。在参数量达到 1750 亿时,模型则能够处理复杂编程任务,多语言代码生成,代码优化和错误修复等,展示出高质量的代码生成和理解能力。

逻辑推理能力使大语言模型能够基于给定信息和规则进行合乎逻辑的推断和结论。这包括简单的条件推理、多步逻辑推理、以及在复杂情境下保持逻辑一致性。GPT-1 和 GPT-2 作为早期的生成预训练模型,在逻辑推理方面的能力非常有限,甚至对于 130 亿参数版本的 GPT-3 模型而言,虽然能处理一部分逻辑推理任务,但在复杂度和精确性上仍存在一定局限性。直到 1750 亿参数版本,GPT-3 才能够处理复杂的逻辑推理任务,生成详细和连贯的推理过程。

这些涌现能力使得大语言模型可以在不进行专项训练的前提下完成各类任务,但同时也带来了诸多挑战,包括模型的可解释性、信息安全与隐私、伦理和公平性问题,以及对计算资源的巨大需求等。解决这些挑战需要在技术、法律和社会层面进行综合考量,以确保大语言模型的健康发展和可持续进步。

大语言模型架构概览

在语言模型的发展历程中,Transformer 框架的问世代表着一个划时代的转折点。其独特的自注意力机制极大地提升了模型对序列数据的处理能力,在捕捉长距离依赖关系方面表现尤为出色。此外,Transformer 框架对并行计算的支持极大地加速了模型的训练过程。当前,绝大多数大语言模型均以 Transformer 框架为核心,并进一步演化出了三种经典架构,分别是 Encoder-only 架构,Decoder-only 架构以及 Encoder-Decoder 架构。这三种架构在设计和功能上各有不同。

Encoder-only 架构

Encoder-only 架构仅选取了 Transformer 中的编码器部分,用于接收输入文本并生成与上下文相关的特征。具体来说,Encoder-only 架构包含三个部分,分别是输入编码部分,特征编码部分以及任务处理部分。其中输入编码部分包含分词、向量化以及添加位置编码三个过程。而特征编码部分则是由多个相同的编码模块堆叠而成,其中每个编码模块包含自注意力模块和全连接前馈模块。任务处理模块是针对任务需求专门设计的模块,其可以由用户针对任务需求自行设计。Encoder-only 架构模型的预训练阶段和推理阶段在输入编码和特征编码部分是一致的,而任务处理部分则需根据任务的不同特性来进行定制化的设计。

在输入编码部分,原始输入文本会被分词器拆解为 Token 序列,随后通过词表和词嵌入矩阵映射为向量序列,确保文本信息得以数字化表达。接着为了保留文本中单词的顺序信息,每个向量序列会被赋予位置编码。在特征编码部分,先前得到的向量序列会依次通过一系列编码模块,这些模块通过自注意力机制和前馈网络进一步提取和深化文本特征。任务处理部分在预训练阶段和下游任务适配阶段一般有所差别。在预训练阶段,模型通常使用全连接层作为输出头,用于完成掩码预测等任务。而在下游任务适配阶段,输出头会根据具体任务需求进行定制。例如,对于情感分析或主题分类等判别任务,只需要添加一个分类器便可直接输出判别结果。但对于文本摘要生成等生成任务,则需要添加一个全连接层,逐个预测后续的 Token。但以这种形式来完成生成任务存在着诸多的限制,例如在每次生成新的 Token 时,都需要重新计算整个输入序列的表示,这增加了计算成本,也可能导致生成的文本缺乏连贯性。

Encoder-Decoder 架构

为了弥补 Encoder-only 架构在文本生成任务上的短板,Encoder-Decoder 架构在其基础上引入了一个解码器,并采用交叉注意力机制来实现编码器与解码器之间的有效交互。

具体来说,解码器包含了输出编码、特征解码以及输出生成三个部分。其中输出编码与编码器中的输入编码结构相同,包含分词、向量化以及添加位置编码三个过程,将原始输入文本转换化为带有位置信息的向量序列。此外,特征解码部分与特征编码部分在网络结构上也高度相似,包括掩码自注意力模块,交叉注意力模块和全连接前馈模块。其中掩码自注意力模块确保模型只关注上文,不会 “预见” 未来的信息,从而可以在无 “下文泄露” 的条件下,进行 “自回归” 的训练和推理。而交叉注意力模块则负责处理从编码模块向解码模块传递相关信息。输出生成部分则由一个线性层以及一个 Softmax 层组成,负责将特征解码后的向量转换为词表上的概率分布,并从这个分布中采样得到最合适的 Token 作为输出。

在训练阶段,样本中同时包含了输入和真实输出文本。其中输入文本首先被输入编码部分转化为向量序列,接着在特征编码模块中被多个堆叠起来的编码模块进一步处理,从而被转化为上下文表示。而输出文本之前会被添加特殊的开始标记 [START],然后在输出编码部分被分词、词嵌入和位置编码处理后,并行输入到特征解码模块中。接着解码模块使用 Teacher Forcing 技术,在每轮预测时,使用真实输出文本中的已知部分作为输入,并结合从最后一个编码块得到的上下文信息,来预测下一个 Token,计算预测的 Token 和真实 Token 之间的损失,通过反向传播更新模型参数。

在推理阶段,由于缺少了真实的输出文本,所以输出序列原始状态只有开始标记 [START],也不再需要分词器。模型需要通过自回归的方式,在每轮采样生成 Token 后,会将其拼接到输出序列中,用于下一轮预测。这个过程循环进行,直到生成特定的结束标记 [end] 或达到模型设定的最大输出长度。在这一过程中,由于每轮的输入依赖于上一轮的采样结果,因此只能一步步地串行输出。

Decoder-only 架构

为了有效缩减模型的规模以及降低整体的计算复杂度,Decoder-only 架构摒弃了 Encoder-Decoder 架构中的编码器部分以及与编码器交互的交叉注意力模块。在这种架构下,模型仅使用解码器来构建语言模型。这种架构利用 “自回归” 机制,在给定上文的情况下,生成流畅且连贯的下文。

Decoder-only 架构同样包含了三个部分,分别是输入编码部分、特征解码部分以及输出生成部分。Decoder-only 架构的核心特点在于省略了每个编码模块中的交叉注意力子模块,这也是其与传统 Encoder-Decoder 架构中解码器部分的主要区别。

三种架构的对比

这三种模型架构虽然都源自于 Transformer 框架,但他们在注意力矩阵上有着显著区别,这也造就了他们在功能以及最终适用任务上的不同。

Encoder-only 架构中的注意力矩阵来自于自注意力模块,用于捕捉输入序列中各个 Token 之间的关系。Encoder-only 架构的注意力矩阵呈现出 “完全” 的注意力,即对于每个 Token 的理解都依赖于整个输入序列中的所有 Token。例如,在将输入 Token \(x_{i}\)转换为上下文向量 \(y_{i}\)的过程中,模型能够综合利用从\(x_{1} ~ x_{n}\)的所有输入信息,这就是所谓的双向注意力机制。在这种双向注意力机制的作用下,模型能够同时利用前后文信息,深入理解复杂的语义联系和上下文依赖。因此,Encoder-only 架构的模型特别适合于自然语言理解任务,如情感分析或文本分类等判别任务。然而,由于缺少解码器组件,Encoder-only 架构的模型无法直接生成所需目标序列,因此在自然语言生成任务上可能表现不如专门设计的生成模型。

Encoder-Decoder 架构中的注意力矩阵较为复杂,它结合了编码器的自注意力、解码器的掩码自注意力以及交叉注意力三种机制。编码器的自注意力矩阵与 Encoder-only 架构类似,用于生成输入序列的全面上下文表示,呈现 “完全” 的注意力。而解码器的掩码自注意力矩阵则呈现出 “下三角” 的注意力,确保在生成当前 Token 时,模型只关注之前生成的 Token。此外,交叉注意力机制允许解码器始终能够动态地参考编码器生成的完整上下文表示,确保输出与输入序列高度相关且连贯。例如,在编码器将输入\(x_{i}\)转化为上下文向量时,可以利用从\(x_{1} ~ x_{n}\)的所有输入信息;当解码器在生成 Token\(y_{i}\)的时候,可以参考由\(x_{1} ~ x_{n}\)转化得到的上下文向量以及先前生成的 Token 序列\(y_{1} ~ y_{i-1}\)的相关信息。这种编码器和解码器的结合,使得模型可以有效地处理复杂的输入条件,并生成相关且连贯的高质量内容。因此,Encoder-Decoder 架构的模型非常适合于处理各种复杂的有条件生成任务,例如机器翻译、文本摘要和问答系统等需要同时理解输入并生成相应输出的场景。但新添加解码器也同样带来了模型规模以及计算量庞大的问题。

Decoder-only 架构中的注意力矩阵来自于掩码自注意力模块,其特点是呈现出 “下三角” 的注意力模式。这意味着在预测当前 Token 时,模型只能依赖于已经生成的历史 Token 信息,体现了单向注意力机制。例如,在生成 Token\(y_{i}\)的时候,模型只能考虑先前\(y_{1} ~ y_{i-1}\)的信息,这样的设计确保了生成过程的顺序性和文本的连贯性。大规模预训练数据的加持使得 Decoder-only 架构的模型能够生成高质量、连贯的文本,在自动故事生成、新闻文章生成此类不依赖于特定的输入文本的无条件文本生成任务中表现出色。然而,在模型规模有限的情况下(例如 GPT-1 以及 GPT-2 等模型),由于缺乏编码器提供的双向上下文信息,Decoder-only 架构的模型在理解复杂输入数据时存在一定局限性,表现可能不如 Encoder-Decoder 架构。

在不同的历史阶段,三种模型架构分别展现了自身的优势。随着模型规模以及数据规模的显著增长,Decoder-only 架构的模型逐渐占据上风,以其强大的任务泛化性能展现出成为 “大一统” 的架构的潜力。当前,以 GPT-3、GPT-4 等为代表的大型 Decoder-only 语言模型,已经发展出了与人类媲美甚至超越人类的记忆、推理以及执行复杂任务的能力。

大语言模型的发展历程是一部充满创新与突破的历史,从最初的探索到如今的蓬勃发展,每一步都凝聚着无数研究者的智慧和努力。未来,随着技术的不断进步和应用的深入拓展,大语言模型必将在更多领域发挥重要作用,为我们的生活带来更多的便利和惊喜。同时,我们也需要关注大语言模型带来的挑战,积极探索解决方案,确保其健康、可持续发展。

架构解析:大语言模型的基石

大语言模型:开启人工智能新时代

在当今数字化时代,大语言模型(LLM)正以前所未有的速度和影响力,引领着人工智能领域的变革,成为全球科技界关注的焦点。从最初的理论探索到如今广泛应用于各个领域,大语言模型不仅展现了强大的语言处理能力,更推动了新智能的涌现,为人类社会带来了诸多机遇和挑战。

大语言模型的发展历程,是一部不断突破和创新的奋斗史。2017 年 Transformer 架构的诞生,为大语言模型的发展奠定了坚实基础。其独特的自注意力机制,打破了传统神经网络在处理长距离依赖关系时的困境,使得模型能够更有效地捕捉文本中的语义信息。正如维特根斯坦所说:“我的语言的界限意味着我的世界的界限。”Transformer 架构的出现,极大地拓展了语言模型的 “世界界限”,为后续的发展开辟了广阔道路。

随后,BERT 和 GPT-1 模型的问世,开启了预训练语言模型的新纪元。BERT 基于 Encoder-only 架构,通过双向注意力机制,能够充分理解文本的上下文信息,在自然语言理解任务中表现出色,如情感分析、文本分类等。而 GPT-1 则采用 Decoder-only 架构,专注于文本生成任务,虽然在早期版本中能力有限,但为后续 GPT 系列的发展奠定了基础。

2019 至 2022 年是大语言模型的发展期,GPT-2、T5 以及 GPT-3 等模型在参数规模和能力上实现了大幅提升。GPT-2 在语言生成方面的能力有了显著进步,能够生成更连贯、自然的文本。T5 则通过统一的文本到文本转换框架,展示了强大的多任务处理能力。GPT-3 更是以其 1750 亿的庞大参数规模,展现出惊人的语言理解和生成能力,能够在无需大量特定任务训练的情况下,完成各种复杂的语言任务,如问答、翻译、代码生成等。

2022 年起,大语言模型进入突破期,ChatGPT 和 GPT-4 等模型的发布,标志着大语言模型技术取得了重大突破。ChatGPT 以其出色的对话交互能力,让人们直观感受到了大语言模型的魅力,引发了全球范围内的广泛关注和讨论。GPT-4 则在性能和能力上更进一步,不仅在语言处理上更加精准和智能,还展现出了一定的逻辑推理和多模态理解能力,能够处理图像、音频等多种形式的信息,为人工智能的发展带来了新的可能性。

大语言模型的能力提升,离不开大数据和大模型的协同作用。数据规模的增长为模型提供了丰富的学习素材,使模型能够学习到更多样化的语言模式和语义关系。模型规模的扩大则极大地增强了模型的表达能力,使其能够捕捉到更细微的语言特征和复杂的语言结构。在这一过程中,模型对数据分布的拟合能力不断提升,从而在复杂多变的数据环境中表现出更高的适应性和有效性。

OpenAI 提出的 Kaplan-McCandlish 扩展法则,定量揭示了数据规模和模型规模对模型能力的重要影响。实验表明,模型的性能与模型以及数据规模高度正相关,在计算预算增加时,模型规模的增长速度应略快于数据规模的增长速度,以实现模型的最佳性能。而 DeepMind 提出的 Chinchilla 扩展法则,则强调了数据规模在提升模型性能中的重要性,指出模型规模和数据规模应按相同比例增加,理想的数据集大小应为模型规模的 20 倍。这两种扩展法则为大语言模型的设计和优化提供了宝贵的指导意见,推动了大语言模型的发展。

随着模型训练数据规模和参数数量的不断提升,大语言模型还涌现出了一系列令人惊叹的新能力。上下文学习能力使模型能够在推理过程中,利用输入文本的上下文信息执行特定任务,无需额外训练即可理解任务要求并生成恰当输出。常识推理能力赋予模型基于常识知识和逻辑进行理解和推断的能力,能够回答日常生活中的问题,解决实际问题。代码生成能力允许模型基于自然语言描述自动生成编程代码,极大地提高了软件开发的效率。逻辑推理能力使模型能够基于给定信息和规则进行合乎逻辑的推断和结论,处理复杂的逻辑任务。

这些涌现能力并非一蹴而就,而是随着模型复杂度的提升自然出现的。它们具有突变性和不可预见性,类似于非线性系统中的 “相变”,在模型达到一定规模和复杂度后突然显现。以 GPT 系列为例,早期的 GPT-1 和 GPT-2 在上下文学习、常识推理、代码生成和逻辑推理等方面的能力非常有限,但随着模型版本的迭代和参数规模的增加,GPT-3 和 GPT-4 在这些方面取得了显著进步,展现出强大的能力。

大语言模型的主流架构包括 Encoder-only、Encoder-Decoder 和 Decoder-only 三种。Encoder-only 架构仅使用 Transformer 中的编码器部分,通过双向注意力机制捕捉输入序列中各个 Token 之间的关系,特别适合自然语言理解任务,但在自然语言生成任务上存在局限。Encoder-Decoder 架构在 Encoder-only 架构的基础上引入了解码器,采用交叉注意力机制实现编码器与解码器之间的有效交互,能够处理复杂的有条件生成任务,如机器翻译、文本摘要和问答系统等。Decoder-only 架构则摒弃了编码器部分和交叉注意力模块,利用 “自回归” 机制生成流畅连贯的下文,在无条件文本生成任务中表现出色,如自动故事生成、新闻文章生成等。

在实际应用中,不同架构的大语言模型各有优势。在智能客服领域,Encoder-Decoder 架构的模型能够理解用户的问题,并生成准确、连贯的回答,为用户提供高效的服务。在内容创作领域,Decoder-only 架构的模型可以根据给定的主题或提示,生成富有创意和连贯性的文章、故事等。在信息检索和知识图谱构建领域,Encoder-only 架构的模型能够对大量文本进行分析和理解,提取关键信息,为相关应用提供支持。

然而,大语言模型的发展也带来了诸多挑战。模型的可解释性问题一直是人工智能领域的难题,大语言模型也不例外。由于模型的复杂性和参数的庞大,很难理解模型的决策过程和输出结果的依据,这在一些对决策透明度要求较高的领域,如医疗、金融等,可能会限制模型的应用。信息安全与隐私问题也不容忽视,大语言模型在训练和应用过程中需要处理大量的数据,如何保护用户的隐私和数据安全,防止数据泄露和滥用,是亟待解决的问题。此外,伦理和公平性问题、对计算资源的巨大需求等,也给大语言模型的发展带来了一定的压力。

为了应对这些挑战,学术界和工业界正在积极探索解决方案。在模型可解释性方面,研究人员提出了多种方法,如可视化技术、注意力机制分析等,试图揭示模型的内部工作机制。在信息安全与隐私保护方面,采用加密技术、差分隐私等方法,确保数据的安全性和隐私性。在伦理和公平性方面,制定相关的伦理准则和规范,引导模型的开发和应用符合道德和法律要求。同时,不断优化模型的训练算法和硬件设施,提高计算资源的利用效率,降低计算成本。

大语言模型作为人工智能领域的重要突破,已经深刻改变了我们的生活和工作方式。从智能客服、内容创作到信息检索、知识图谱构建,大语言模型在各个领域都展现出了巨大的应用潜力。然而,我们也应清醒地认识到,大语言模型的发展仍面临诸多挑战,需要学术界、工业界和政府等各方共同努力,加强合作,探索有效的解决方案。只有这样,我们才能充分发挥大语言模型的优势,为人类社会的发展带来更多的福祉,推动人工智能技术朝着更加健康、可持续的方向发展。在未来,大语言模型有望继续突破创新,与其他技术深度融合,创造出更多令人惊喜的应用和价值,让我们拭目以待。

能力跃升:大数据与大模型的融合

大语言模型:从原理到架构的深度解析

在当今数字化时代,大语言模型已成为人工智能领域的焦点,其强大的语言处理能力和广泛的应用前景令人瞩目。从最初的基础模型到如今的大规模预训练模型,大语言模型的发展历程见证了技术的飞速进步。本文将深入探讨大语言模型的基础原理和架构,带你揭开其神秘面纱。

语言模型基础

语言,作为人类交流和表达的重要工具,是一套复杂而精妙的符号系统。它由音韵、词法、句法等要素构成,并承载着丰富的语义信息。语言的符号具有不确定性,同样的语义可以通过不同的音韵、词法和句法组合来表达,而相同的符号在不同语境下也可能表达不同的语义。这使得语言充满了概率性,与认知的概率性密切相关。

语言模型(Language Models, LMs)的核心目标是准确预测语言符号的概率。从语言学角度看,语言模型能帮助计算机掌握语法、理解语义,从而完成自然语言处理任务;从认知科学角度,它能赋能计算机描摹认知、演化智能。语言模型的发展经历了多个阶段,从早期的 ELIZA 规则模型,到基于统计方法的 n-grams 语言模型,再到基于神经网络的 RNN 和 Transformer 语言模型,其能力不断提升,从简单的机械式问答逐渐发展为具有强大泛化能力的多任务智能模型。

基于统计方法的语言模型

语言模型通过对语料库中的语料进行统计或学习,来获得预测语言符号概率的能力。基于统计的语言模型中,n-grams 是最具代表性的一种。它基于马尔可夫假设和离散变量的极大似然估计,通过统计语言符号在语料库中出现的频率来预测其概率。

n-grams 语言模型中的 n-gram 指的是长度为 n 的词序列。该模型通过依次统计文本中的 n-gram 及其对应的 (n-1)-gram 在语料库中出现的相对频率,来计算文本出现的概率。例如,对于文本 “长颈鹿脖子长”,应用 bigrams 语言模型计算其出现的概率时,公式为\(P_{bigrams}(长颈鹿, 脖子, 长 )=\frac{C(长颈鹿, 脖子 )}{C(长颈鹿 )} \cdot \frac{C(脖子, 长 ) }{C (脖子 ) }\) 。在给定的语料库中,通过查询相应词序列的出现次数,即可计算出该文本出现的概率。

n-grams 语言模型是在 n 阶马尔可夫假设下,对语料库中出现的长度为 n 的词序列出现概率的极大似然估计。n 阶马尔可夫假设认为,当前状态出现的概率只与前 n 个状态有关。通过离散型随机变量的极大似然估计,n-grams 语言模型可以近似计算语言符号出现的概率。虽然 n-grams 语言模型对未知序列有一定的泛化性,但当 n 过大时,容易出现 “零概率” 现象;n 过小时,又难以承载足够的语言信息。

基于 RNN 的语言模型

随着神经网络的发展,基于各类神经网络的语言模型不断涌现,其中基于循环神经网络(Recurrent Neural Network, RNN)的语言模型具有独特的优势。RNN 是一类网络连接中包含环路的神经网络,其环路结构允许将历史状态叠加到当前状态上,从而使模型能够基于历史规律对未来进行预测。

RNN 的基本原理是,给定一个输入序列,其环路用于将历史状态循环累积,并作为预测未来状态的依据。在推理过程中,RNN 将输入序列一个元素接着一个元素地串行输入,前面的元素会被循环编码成隐状态,并叠加到当前的输入上面。与前馈神经网络(FNN)相比,RNN 能够考虑历史信息,在处理序列数据时具有更好的性能。例如,在预测 “长颈鹿脖子长” 中 “长” 这个词时,RNN 可以同时考虑 “长颈鹿” 和 “脖子” 的信息,从而提高预测的准确性。

然而,RNN 的训练过程中存在梯度衰减或梯度爆炸问题,这是由于其环路结构导致在训练时涉及大量的矩阵联乘操作,使得梯度的数值容易被级联放大或缩小。为了解决这一问题,GRU 和 LSTM 等改进的 RNN 架构引入了门控结构,有效改善了训练的稳定性和效果。

基于 RNN 的语言模型,以词序列作为输入,每次根据当前词和循环输入的隐藏状态,来预测下一个词出现的概率。通过构建交叉熵损失函数,并利用反向传播算法进行训练,RNN 语言模型可以学习到语言的模式和规律。在训练完成后,该模型可以用于文本生成任务,通过 “自回归” 的方式,不断生成新的词,从而构成一段文本。然而,“自回归” 过程存在错误级联放大和串行计算效率低的问题,为了解决这些问题,“Teacher Forcing” 方法在训练中被广泛应用,但同时也带来了曝光偏差的问题。为了解决曝光偏差,又提出了 Scheduled Sampling 方法。

基于 Transformer 的语言模型

Transformer 是一类基于注意力机制的模块化构建的神经网络结构,它的出现为语言模型的发展带来了新的突破。Transformer 通过将一定数量的历史状态和当前状态同时输入,并进行加权相加,实现对未来状态的预测。基于 Transformer 的语言模型,以词序列作为输入,基于一定长度的上文和当前词来预测下一个词出现的概率。

Transformer 由注意力模块和全连接前馈模块组成。注意力模块采用加权平均的思想,将前文信息叠加到当前状态上。它将输入编码为 query、key、value 三部分,通过计算自注意力的权重,将相关的 value 信息叠加到当前状态。全连接前馈层则掌管着 Transformer 模型的记忆,包含两层,两层之间由 ReLU 作为激活函数。此外,Transformer 还引入了层正则化和残差连接,以加速训练过程并解决梯度消失问题。

基于 Transformer 的语言模型可以设计多种预训练任务,如基于 Transformer 的 Encoder 部分结合 “掩词补全” 任务训练 Encoder-Only 语言模型,同时应用 Transformer 的 Endcoder 和 Decoder 部分结合多个任务训练 Encoder-Decoder 语言模型,以及应用 Transformer 的 Decoder 部分利用 “下一词预测” 任务训练 Decoder-Only 语言模型。在训练过程中,Transformer 语言模型常用交叉熵函数作为损失函数,通过反向传播进行训练。与 RNN 模型相比,Transformer 的并行输入特性使其容易进行并行计算,但也导致网络模型的规模随输入序列长度的增长而平方次增长,给处理长序列带来挑战。

大语言模型架构

随着数据资源和计算能力的爆发式增长,语言模型的参数规模和性能表现实现了质的飞跃,迈入了大语言模型(Large Language Model, LLM)的新时代。大语言模型凭借庞大的参数量和丰富的训练数据,展现出强大的泛化能力和新智能的涌现,在生成式人工智能(Artificial Intelligence Generated Content, AIGC)领域发挥着重要作用。

大语言模型的发展历程可以大致划分为三个阶段:2017 至 2018 年是基础模型的萌芽期,以 Transformer 架构的诞生和 BERT、GPT-1 模型的问世为标志;2019 至 2022 年是大语言模型的发展期,通过 GPT-2、T5 以及 GPT-3 等模型在参数规模和能力上的大幅提升,研究者开始深入探索大语言模型的潜力;2022 年起则是大语言模型的突破期,ChatGPT 以及 GPT-4 等模型的发布标志着大语言模型相关技术的显著进步。

大数据 + 大模型→新智能

在自然语言处理领域,大语言模型的发展离不开大数据和大模型的相互作用。大数据为模型提供了丰富的信息源,使模型能够学习到多样化的语言模式和语义关系;大模型则凭借其强大的表达能力,能够捕捉到细微的语言特征和复杂的语言结构。在大数据和大模型的共同作用下,模型的能力得到了增强和扩展。

模型规模和数据规模的增长并非没有代价,它们带来了更高的计算成本和存储需求。为了应对这一挑战,大语言模型的扩展法则应运而生。OpenAI 提出的 Kaplan-McCandlish 扩展法则揭示了模型性能与数据规模、模型规模之间的函数关系,指出在计算预算增加时,模型规模和数据规模应同步增加,且模型规模的增长速度应略快于数据规模。DeepMind 提出的 Chinchilla 扩展法则则强调了数据规模在提升模型性能中的重要性,认为模型规模和数据规模应同等重要,理想的数据集大小应为模型规模的 20 倍。

随着模型训练数据规模和参数数量的不断提升,大语言模型不仅学习能力稳步增强,还涌现出了一系列新的能力,如上下文学习能力、常识推理能力、数学运算能力、代码生成能力等。这些涌现能力并非通过在特定下游任务上训练获得,而是随着模型复杂度的提升自然涌现。例如,在 GPT 系列的演变中,不同版本的模型在上下文学习、常识推理、代码生成和逻辑推理等方面的能力不断提升,展现出大语言模型的强大潜力。

大语言模型架构概览

在语言模型的发展历程中,Transformer 框架的问世具有划时代的意义。其独特的自注意力机制极大地提升了模型对序列数据的处理能力,对并行计算的支持也加速了模型的训练过程。当前,绝大多数大语言模型均以 Transformer 框架为核心,并演化出了三种经典架构:Encoder-only 架构、Decoder-only 架构以及 Encoder-Decoder 架构。

Encoder-only 架构仅选取 Transformer 中的编码器部分,用于接收输入文本并生成与上下文相关的特征。它包含输入编码、特征编码和任务处理三个部分。在输入编码部分,原始输入文本被分词、向量化并添加位置编码;在特征编码部分,通过多个编码模块进一步提取和深化文本特征;在任务处理部分,根据任务需求进行定制化设计。Encoder-only 架构的模型在自然语言理解任务中表现出色,但在自然语言生成任务上存在一定限制。

Encoder-Decoder 架构在 Encoder-only 架构的基础上引入了解码器,并采用交叉注意力机制实现编码器与解码器之间的有效交互。解码器包含输出编码、特征解码和输出生成三个部分。在训练阶段,使用 Teacher Forcing 技术,结合输入文本和真实输出文本进行训练;在推理阶段,通过自回归的方式生成输出文本。这种架构适合处理各种复杂的有条件生成任务,如机器翻译、文本摘要和问答系统等。

Decoder-only 架构摒弃了 Encoder-Decoder 架构中的编码器部分和交叉注意力模块,仅使用解码器构建语言模型。它利用 “自回归” 机制,在给定上文的情况下生成流畅连贯的下文。这种架构在无条件文本生成任务中表现出色,如自动故事生成、新闻文章生成等,但在理解复杂输入数据时可能存在局限性。

这三种架构在注意力矩阵和适用任务上存在显著差异。Encoder-only 架构的注意力矩阵呈现 “完全” 的注意力,适合自然语言理解任务;Encoder-Decoder 架构的注意力矩阵结合了编码器的自注意力、解码器的掩码自注意力和交叉注意力,适合复杂的有条件生成任务;Decoder-only 架构的注意力矩阵呈现 “下三角” 的注意力,适合无条件文本生成任务。随着模型规模和数据规模的增长,Decoder-only 架构的模型逐渐展现出强大的任务泛化性能,成为当前大语言模型发展的重要趋势。

大语言模型的发展是人工智能领域的一次重大突破,其基础原理和架构的不断演进为自然语言处理带来了新的机遇和挑战。通过深入了解大语言模型的原理和架构,我们可以更好地应用这一技术,推动人工智能在各个领域的发展。同时,我们也需要关注大语言模型带来的诸多挑战,如模型的可解释性、信息安全与隐私、伦理和公平性问题等,通过综合考量技术、法律和社会层面的因素,确保大语言模型的健康发展和可持续进步。

未来展望:大语言模型的无限可能

大语言模型架构:探索语言智能的基石

在当今数字化时代,大语言模型(LLM)正以前所未有的速度改变着我们与语言交互的方式。从智能聊天机器人到自动化内容生成,从智能翻译到智能写作辅助,大语言模型的应用无处不在。它们的强大能力源于其独特的架构设计,这些架构不仅决定了模型的性能,还为语言智能的发展开辟了新的道路。今天,就让我们一起深入探索大语言模型架构的奥秘。

大语言模型架构的演进

大语言模型的发展历程,是一部不断创新和突破的历史。早期的语言模型,如基于统计方法的 n - grams 语言模型,通过统计词序列在语料库中出现的频率来预测语言符号的概率。这种模型虽然对未知序列有一定的泛化性,但容易陷入 “零概率” 的困境。随着神经网络的发展,基于循环神经网络(RNN)的语言模型应运而生。RNN 通过将历史状态叠加到当前状态上,能够基于历史规律对未来进行预测。然而,RNN 的训练过程中容易出现梯度衰减或梯度爆炸问题,限制了其应用。

为了解决这些问题,Transformer 架构应运而生。Transformer 基于注意力机制,将一定数量的历史状态和当前状态同时输入,然后进行加权相加,从而对未来状态进行预测。这种架构不仅能够有效地处理长距离依赖关系,还具有良好的并行计算能力,极大地加速了模型的训练过程。基于 Transformer,研究者们进一步发展出了 Encoder - only、Encoder - Decoder 和 Decoder - only 三种主流架构,推动了大语言模型的快速发展。

主流大语言模型架构详解

  1. Encoder - only 架构

    :Encoder - only 架构仅选取了 Transformer 中的编码器部分,用于接收输入文本并生成与上下文相关的特征。在输入编码部分,原始输入文本会被分词器拆解为 Token 序列,随后通过词表和词嵌入矩阵映射为向量序列,并赋予位置编码。在特征编码部分,向量序列会依次通过一系列编码模块,这些模块通过自注意力机制和前馈网络进一步提取和深化文本特征。任务处理部分在预训练阶段和下游任务适配阶段一般有所差别,在预训练阶段通常使用全连接层作为输出头,用于完成掩码预测等任务;在下游任务适配阶段,输出头会根据具体任务需求进行定制。例如,BERT 模型就是基于 Encoder - only 架构,通过大规模的预训练,在自然语言理解任务中取得了优异的成绩。

  2. Encoder - Decoder 架构

    :为了弥补 Encoder - only 架构在文本生成任务上的短板,Encoder - Decoder 架构在其基础上引入了一个解码器,并采用交叉注意力机制来实现编码器与解码器之间的有效交互。在训练阶段,样本中同时包含了输入和真实输出文本,输入文本经过输入编码和特征编码后转化为上下文表示,输出文本添加开始标记后经过输出编码,然后在特征解码模块中结合上下文信息预测下一个 Token,计算预测与真实 Token 之间的损失,通过反向传播更新模型参数。在推理阶段,模型通过自回归的方式,在每轮采样生成 Token 后,将其拼接到输出序列中,用于下一轮预测,直到生成特定的结束标记或达到模型设定的最大输出长度。T5 模型就是基于 Encoder - Decoder 架构,在多种自然语言处理任务中表现出色。

  3. Decoder - only 架构

    :Decoder - only 架构摒弃了 Encoder - Decoder 架构中的编码器部分以及与编码器交互的交叉注意力模块,仅使用解码器来构建语言模型。这种架构利用 “自回归” 机制,在给定上文的情况下,生成流畅且连贯的下文。在输入编码部分,输入文本经过分词、词嵌入和位置编码后,进入特征解码模块,特征解码模块省略了交叉注意力子模块,仅使用掩码自注意力模块和全连接前馈模块。输出生成部分由一个线性层以及一个 Softmax 层组成,负责将特征解码后的向量转换为词表上的概率分布,并从这个分布中采样得到最合适的 Token 作为输出。GPT 系列模型就是基于 Decoder - only 架构,以其强大的语言生成能力而闻名。

大语言模型架构的未来展望

随着技术的不断发展,大语言模型架构也在不断演进。未来,我们有望看到更加高效、强大的架构出现,这些架构将进一步提升模型的性能和泛化能力。例如,一些研究正在探索如何将 Transformer 架构与其他技术相结合,以实现更高效的计算和更好的性能。此外,随着对模型可解释性和安全性的关注不断增加,未来的大语言模型架构可能会更加注重这些方面的设计。

大语言模型架构是语言智能的基石,它们的发展推动了自然语言处理技术的巨大进步。通过深入了解这些架构,我们可以更好地理解大语言模型的工作原理,为其应用和发展提供更有力的支持。在未来,相信大语言模型架构将继续创新,为我们带来更多的惊喜和突破。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值