一例积分题

求积分:

雨中漫步

∫ 0 π 2 x sin ⁡ x 1 + cos ⁡ 2 x d x \int_0^{\frac{\pi}{2}}{\frac{x\sin x}{1+\cos ^2x}dx} 02π1+cos2xxsinxdx

解:首先通过分部积分:
∫ 0 π 2 x sin ⁡ x 1 + cos ⁡ 2 x d x \int_0^{\frac{\pi}{2}}{\frac{x\sin x}{1+\cos ^2x}dx} 02π1+cos2xxsinxdx
= − ∫ 0 π 2 x d arctan ⁡ cos ⁡ x \qquad=-\int_0^{\frac{\pi}{2}}{xd\arctan\cos x} =02πxdarctancosx
= ∫ 0 π 2 arctan ⁡ cos ⁡ x d x \quad =\int_0^{\frac{\pi}{2}}{\arctan\cos xdx} =02πarctancosxdx
= ∫ 0 1 arctan ⁡ x 1 − x 2 d x =\int_0^1{\frac{\arctan x}{\sqrt{1-x^2}}dx} =011x2 arctanxdx

I ( α ) = ∫ 0 1 arctan ⁡ α x 1 − x 2 d x , I\left( \alpha \right) =\int_0^1{\frac{\arctan \alpha x}{\sqrt{1-x^2}}dx}, I(α)=011x2 arctanαxdx,我们有:
I ( 0 ) = 0 , I\left( 0 \right) =0, I(0)=0,
I ( ∞ ) = π 2 ∫ 0 1 d x 1 − x 2 = π 2 4 I\left( \infty \right) =\frac{\pi}{2}\int_0^1{\frac{dx}{\sqrt{1-x^2}}}=\frac{\pi ^2}{4} I()=2π011x2 dx=4π2
接着我们研究导数有:
I ′ ( α ) = ∫ 0 1 x ( 1 + α 2 x 2 ) 1 − x 2 d x I'\left( \alpha \right) =\int_0^1{\frac{x}{\left( 1+\alpha ^2x^2 \right) \sqrt{1-x^2}}dx} I(α)=01(1+α2x2)1x2 xdx
= ∫ 0 1 d t 1 + α 2 − α 2 t 2 =\int_0^1{\frac{dt}{1+\alpha ^2-\alpha ^2t^2}} =011+α2α2t2dt
= ln ⁡ ( α + α 2 + 1 ) α 1 + α 2 =\frac{\ln \left( \alpha +\sqrt{\alpha ^2+1} \right)}{\alpha \sqrt{1+\alpha ^2}} =α1+α2 ln(α+α2+1 )
那么:
∫ 0 1 arctan ⁡ x 1 − x 2 d x = I ( 1 ) = ∫ 0 1 I ′ ( α ) d α = ∫ 0 1 ln ⁡ ( α + α 2 + 1 ) α 1 + α 2 d α = − ∫ 0 1 ln ⁡ ( α + α 2 + 1 ) 1 + 1 α 2 d 1 α = − ∫ 0 1 ln ⁡ ( α + α 2 + 1 ) d ln ⁡ ( 1 α + ( 1 α ) 2 + 1 ) = ∫ 0 1 ln ⁡ ( 1 α + ( 1 α ) 2 + 1 ) α 2 + 1 d α − ln ⁡ 2 ( 1 + 2 ) = ∫ 1 + ∞ ln ⁡ ( α + α 2 + 1 ) α 1 + α 2 d α − ln ⁡ 2 ( 1 + 2 ) = ∫ 1 + ∞ I ′ ( α ) d α − ln ⁡ 2 ( 1 + 2 ) = I ( ∞ ) − I ( 1 ) − ln ⁡ 2 ( 1 + 2 ) = I ( 1 ) = I ( ∞ ) − ln ⁡ 2 ( 1 + 2 ) 2 = π 2 8 − 1 2 ln ⁡ 2 ( 1 + 2 ) \int_0^1{\frac{\arctan x}{\sqrt{1-x^2}}dx}=I\left( 1 \right) =\int_0^1{I'\left( \alpha \right)}d\alpha \\ =\int_0^1{\frac{\ln \left( \alpha +\sqrt{\alpha ^2+1} \right)}{\alpha \sqrt{1+\alpha ^2}}}d\alpha \\ =-\int_0^1{\frac{\ln \left( \alpha +\sqrt{\alpha ^2+1} \right)}{\sqrt{1+\frac{1}{\alpha ^2}}}}d\frac{1}{\alpha}\\ =-\int_0^1{\ln \left( \alpha +\sqrt{\alpha ^2+1} \right) d\ln \left( \frac{1}{\alpha}+\sqrt{\left( \frac{1}{\alpha} \right) ^2+1} \right)}\\ =\int_0^1{\frac{\ln \left( \frac{1}{\alpha}+\sqrt{\left( \frac{1}{\alpha} \right) ^2+1} \right)}{\sqrt{\alpha ^2+1}}d\alpha -\ln ^2\left( 1+\sqrt{2} \right)}\\ =\int_1^{+\infty}{\frac{\ln \left( \alpha +\sqrt{\alpha ^2+1} \right)}{\alpha \sqrt{1+\alpha ^2}}d\alpha -\ln ^2\left( 1+\sqrt{2} \right)}\\ =\int_1^{+\infty}{I'\left( \alpha \right) d}\alpha -\ln ^2\left( 1+\sqrt{2} \right) \\ =I\left( \infty \right) -I\left( 1 \right) -\ln ^2\left( 1+\sqrt{2} \right) =I\left( 1 \right) \\ =\frac{I\left( \infty \right) -\ln ^2\left( 1+\sqrt{2} \right)}{2}\\ =\frac{\pi ^2}{8}-\frac{1}{2}\ln ^2\left( 1+\sqrt{2} \right) 011x2 arctanxdx=I(1)=01I(α)dα=01α1+α2 ln(α+α2+1 )dα=011+α21 ln(α+α2+1 )dα1=01ln(α+α2+1 )dlnα1+(α1)2+1 =01α2+1 ln(α1+(α1)2+1 )dαln2(1+2 )=1+α1+α2 ln(α+α2+1 )dαln2(1+2 )=1+I(α)dαln2(1+2 )=I()I(1)ln2(1+2 )=I(1)=2I()ln2(1+2 )=8π221ln2(1+2 )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值