基于 ICA 与 DL 的语音信号盲分离

独立分量分析旨在解决于 Colin Cherry 提出
了著名的”鸡尾酒会”问题,在一个房间里,有
八人同时在说话,此时有八个不同位置上的麦
克风,分别记录八个时间信号 x ( i ) ( t ) , i = 1 ⋅ ⋅ ⋅ 8 , x(i)(t), i = 1 · · · 8, x(i)(t),i=1⋅⋅⋅8
若每个源信号之间相互独立,则每个记录信号
均是八个讲话者发出的语音信号的加权和,以
s ( i ) ( t ) , i = 1 ⋅ ⋅ ⋅ 8 s(i)(t), i = 1 · · · 8 s(i)(t),i=1⋅⋅⋅8来表示八个原信号。此语音混
合过程可以描述如右图2.1所示:
在这里插入图片描述

则易表示原始信号与记录信号之间存在以下关
系:
在这里插入图片描述
在这里插入图片描述
ICA 可以选取多种目标函数 (对比函数) 进行优化。首先从信息论的角度,以最大似然原理作为出发点,有最大似然以及最小互信息作为目标函数;接着另一类基于高阶相关性的目标函数————高阶累积量以及负熵;最后将假设检验原理引入到 ICA 建模中,得到似然比目标函数。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

深度学习的语音盲分离

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值