独立分量分析旨在解决于 Colin Cherry 提出
了著名的”鸡尾酒会”问题,在一个房间里,有
八人同时在说话,此时有八个不同位置上的麦
克风,分别记录八个时间信号
x
(
i
)
(
t
)
,
i
=
1
⋅
⋅
⋅
8
,
x(i)(t), i = 1 · · · 8,
x(i)(t),i=1⋅⋅⋅8,
若每个源信号之间相互独立,则每个记录信号
均是八个讲话者发出的语音信号的加权和,以
s
(
i
)
(
t
)
,
i
=
1
⋅
⋅
⋅
8
s(i)(t), i = 1 · · · 8
s(i)(t),i=1⋅⋅⋅8来表示八个原信号。此语音混
合过程可以描述如右图2.1所示:
则易表示原始信号与记录信号之间存在以下关
系:
ICA 可以选取多种目标函数 (对比函数) 进行优化。首先从信息论的角度,以最大似然原理作为出发点,有最大似然以及最小互信息作为目标函数;接着另一类基于高阶相关性的目标函数————高阶累积量以及负熵;最后将假设检验原理引入到 ICA 建模中,得到似然比目标函数。
深度学习的语音盲分离