梨(Pyrus spp.)是一种广泛栽培的果树,属于蔷薇科梨属,多为多年生木本植物。梨果实的表型特征包括了大小、形状、颜色、表皮光滑度以及成熟度等多个维度。梨主要分为砂梨、白梨、秋子梨、新疆梨、西洋梨五大品种,在梨的育种和栽培工作中,果实形状都被视为至关重要的农艺性状,其果形、果色、果点分布等表型性状直接影响其商品性。
传统上,依赖人工观察与测量的方式在收集梨果实形态的植物表型数据时存在局限性。因此,探索如何高效、准确地提取梨的表型信息,对于推动梨的基础科学研究以及实际应用研究均具有重要意义。
工具/材料
① 一块背景布(黑色或蓝色)和一个白板(5cm*5cm)、成像设备(数码相机、手机、无人机、扫描仪、单反相机等均可)、需要分析的样本
方法/步骤
步骤一:将样本和白板放置背景布上,并用成像设备进行拍照
步骤二:打开PhenoAI分析系统,点击【选择图片】或【选择文件夹】,提取需要分析的图片,点击【运行】即可
*分析结果自动弹出(各作物的轮廓标记图及数据汇总表)
结论
根据PA自动标记的样品编号,可直接获取形态指标L/W Ratio(长宽比)、圆度、紧凑度等形态表型相关数据表格,用来分析不同品种梨的果实整体形状。
可根据RGB的整体均值获取梨果实表面颜色分布情况,利用RGB颜色空间中各个颜色通道中Homogeneity(同质度)、Contrast(对比度)、Dissimilarity(非相似性)等各纹理指标的的差异快速对梨果实的果点分布进行全面分析,从而深入了解果点的形态特征、分布规律和复杂性等信息。
此外,还可拓展PhenoAI Flow利用机器学习或深度学习算法对提取的RGB数据进行分类或识别。例如,可以使用支持向量机(SVM)分类器分析梨果色、果点等外观形态与感官品质、营养品质(如糖分、口感、香气等)之间的关系;还可训练Mask RCNN深度学习模型对不同梨品种进行筛选和鉴定。