Affine set 和 convex set 的定义

什么是 affine set

定义:假设有一个集合 C ⊆ R n C \subseteq \mathbb{R}^n CRn, 如果连接集合 C C C 当中的任何两点构成的直线也在集合 C C C 之中,那么我们就说集合 C C C 是一个 affine set。

如果用数学语言来表述,就是对于任何 x 1 , x 2 ∈ C x_1, x_2 \in C x1,x2C,对任意 θ ∈ R \theta \in \mathbb{R} θR,我们有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1 + (1 - \theta) x_2 \in C θx1+(1θ)x2C。如果一个集合满足这个性质,我们就说这个集合是一个 affine set。

什么是 convex set

Convex set 的定义与 affine set 的定义类似,区别在于 convex set 要求连接集合 C C C 当中的任何两点构成的线段也在集合 C C C 之中。

定义:假设有一个集合 C ∈ R n C \in \mathbb{R}^n CRn, 如果连接集合 C C C 当中的任何两点构成的线段也在集合 C C C 之中,那么我们就说集合 C C C 是一个 convex set。

用数学语言来描述,就是对于任何 x 1 , x 2 ∈ C x_1, x_2 \in C x1,x2C,对任意 0 ≤ θ ≤ 1 0 \leq \theta \leq 1 0θ1,我们有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1 + (1 - \theta) x_2 \in C θx1+(1θ)x2C。如果一个集合满足这个性质,我们就说这个集合是一个 convex set。

从空间结构上来说,对于一个 convex set,连接其中的两个点,所得到的线段也在这个 convex set 中。所以下图代表的集合就不是 convex set。
nonConvex set

关于 convexity 的几个性质

除了定义,我们还有如下的几个关于 convexity 和 affine 的性质。

定理1:如果一个集合 C ∈ R n C \in \mathbb{R}^n CRn 是一个 convex set, x 1 , x 2 ,   ⋯   , x k x_1, x_2, \, \cdots, x_k x1,x2,,xk 是集合 C C C 里的 k k k 个点,那么对于 θ 1 + θ 2 + ⋯ + θ k = 1 \theta_1 + \theta_2 + \cdots + \theta_k = 1 θ1+θ2++θk=1, θ i ≥ 0 ,   1 ≤ i ≤ k \theta_i \geq 0, \, 1 \leq i \leq k θi0,1ik,我们有 θ 1 x 1 + θ 2 x 2 + ⋯ + θ k x k \displaystyle \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k θ1x1+θ2x2++θkxk 也是集合 C C C 中的一个点。

也就是说,对于 convex set 的定义中的两个点的情况,我们可以推广到任意 k k k 个点的情况。

我们用数学归纳法来证明上面的定理。当 k = 1 k = 1 k=1 时,结论自然成立。当 k = 2 k = 2 k=2 时,就是 convex set 的定义。假设结论对 k k k 成立, k ≥ 2 k \geq 2 k2,我们考虑 k + 1 k + 1 k+1 的情况。令 A = θ 1 x 1 + θ 2 x 2 + ⋯ + θ k + 1 x k + 1 A = \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_{k + 1} x_{k + 1} A=θ1x1+θ2x2++θk+1xk+1。对于 θ 1 ,   θ 2 ,   ⋯ θ k + 1 \theta_1, \, \theta_2, \, \cdots \theta_{k + 1} θ1,θ2,θk+1 k + 1 k + 1 k+1 个数,一定有一个小于 1。方便起见,假设 θ 1 ≠ 1 \theta_1 \neq 1 θ1=1。我们有

A = θ 1 x 1 + θ 2 x 2 + ⋯ + θ k + 1 x k + 1 = θ 1 x 1 + ( 1 − θ 1 ) ( θ 2 1 − θ 1 x 2 + θ 3 1 − θ 1 x 3 + ⋯ + θ k + 1 1 − θ 1 x k + 1 ) = θ 1 x 1 + ( 1 − θ 1 ) B \begin{aligned} A &=\theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_{k + 1} x_{k + 1} \\ &= \theta_1 x_1 + (1 - \theta_1) \left( \frac{\theta_2}{1 - \theta_1} x_2 + \frac{\theta_3}{1 - \theta_1} x_3 + \cdots + \frac{\theta_{k + 1}}{1 - \theta_1} x_{k + 1} \right) \\ &= \theta_1 x_1 + (1 - \theta_1) B \end{aligned} A=θ1x1+θ2x2++θk+1xk+1=θ1x1+(1θ1)(1θ1θ2x2+1θ1θ3x3++1θ1θk+1xk+1)=θ1x1+(1θ1)B

B = θ 2 1 − θ 1 x 2 + θ 3 1 − θ 1 x 3 + ⋯ + θ k + 1 1 − θ 1 x k + 1 \displaystyle B = \frac{\theta_2}{1 - \theta_1} x_2 + \frac{\theta_3}{1 - \theta_1} x_3 + \cdots + \frac{\theta_{k + 1}}{1 - \theta_1} x_{k + 1} B=1θ1θ2x2+1θ1θ3x3++1θ1θk+1xk+1,并且 θ 2 1 − θ 1 + θ 3 1 − θ 1 + ⋯ + θ k + 1 1 − θ 1 = θ 2 + θ 3 + ⋯ + θ k + 1 1 − θ 1 = 1 \displaystyle \frac{\theta_2}{1 - \theta_1} + \frac{\theta_3}{1 - \theta_1} + \cdots + \frac{\theta_{k + 1}}{1 - \theta_1} = \frac{\theta_2 + \theta_3 + \cdots + \theta_{k + 1}}{1 - \theta_1} = 1 1θ1θ2+1θ1θ3++1θ1θk+1=1θ1θ2+θ3++θk+1=1。应用我们的假设,结论对于 k k k 是成立的,所以 B ∈ C B \in C BC。从而 A ∈ C A \in C AC。也就是说,结论对于 k + 1 k + 1 k+1 的情况也是成立的。 □ \square

定理2:一个集合 C ∈ R n C \in \mathbb{R}^n CRn 是一个 convex set,当且仅当集合 C C C 与任意直线的交集是一个 convex set。

我们先证明必要性。假设集合 C ∈ R n C \in \mathbb{R}^n CRn 是一个 convex set。我们知道一条直线是一个 convex set。另外,我们知道,两个 convex set 的交集也是一个 convex set。从而, C C C 与任意直线的交集也是一个 convex set。

再证充分性。假设 x 1 ,   x 2 ∈ C x_1, \, x_2 \in C x1,x2C。因为集合 C C C 与任意直线的交集是一个 convex set,从而 C C C 与通过 x 1 , x 2 x_1, x_2 x1,x2 的直线的交集也是一个 convex set。记这个交集为 D D D。那么由 x 1 x_1 x1 x 2 x_2 x2 构成的 convex combination,即 θ x 1 + ( 1 − θ ) x 2 \theta x_1 + (1 - \theta) x_2 θx1+(1θ)x2,也在 D D D 之中。从而 θ x 1 + ( 1 − θ ) x 2 \theta x_1 + (1 - \theta) x_2 θx1+(1θ)x2 也在 C C C 中。所以, C C C 是一个 convex set。

我们不难发现,上述两个定理的证明可以移植到 affine set 中去。所以我们也有。

定理3:如果一个集合 C ∈ R n C \in \mathbb{R}^n CRn 是一个 affine set, x 1 , x 2 ,   ⋯   , x k x_1, x_2, \, \cdots, x_k x1,x2,,xk 是集合 C C C 里的 k k k 个点,那么对于 θ 1 + θ 2 + ⋯ + θ k = 1 \theta_1 + \theta_2 + \cdots + \theta_k = 1 θ1+θ2++θk=1, θ i ≥ 0 ,   1 ≤ i ≤ k \theta_i \geq 0, \, 1 \leq i \leq k θi0,1ik,我们有 θ 1 x 1 + θ 2 x 2 + ⋯ + θ k x k \displaystyle \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k θ1x1+θ2x2++θkxk 也是集合 C C C 中的一个点。

定理4:一个集合 C ∈ R n C \in \mathbb{R}^n CRn 是一个 affine set,当且仅当集合 C C C 与任意直线的交集是一个 affine set。

什么是 convex hull

对于任意的一个集合 C ∈ R n C \in \mathbb{R}^n CRn, 我们都可以定义集合 C C C 的 Convex hull。那怎样定义集合 C C C 的 Convex hull 呢?

如果集合 C ∈ R n C \in \mathbb{R}^n CRn,那么集合 C C C 的 convex hull 定义为
定义: c o n v   C = { θ 1 x 1 + θ 2 x 2 + ⋯ θ k x k   ∣   x i ∈ C , θ i ≥ 0 , i = 1 ,   2 ,   ⋯ k , θ 1 + θ 2 + ⋯ + θ k = 1 } \mathbf{conv} \, C = \{ \theta_1 x_1 + \theta_2 x_2 + \cdots \theta_k x_k \, | \, x_i \in C, \theta_i \geq 0, i = 1, \, 2, \, \cdots k, \theta_1 + \theta_2 + \cdots + \theta_k = 1 \} convC={θ1x1+θ2x2+θkxkxiC,θi0,i=1,2,k,θ1+θ2++θk=1}

也就是说,convex hull 是由集合 C C C 之中所有点的 convex combination 所构成的集合。首先, c o n v   C \mathbf{conv} \, C convC 是一个 convex set。这是因为如果
A = θ 1 x 1 + θ 2 x 2 + ⋯ + θ i x i ,   ∑ k = 1 i θ k = 1 \displaystyle A = \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_i x_i, \, \sum_{k = 1}^i \theta_k = 1 A=θ1x1+θ2x2++θixi,k=1iθk=1
B = τ 1 y 1 + τ 2 y 2 + ⋯ + τ j y j ,   ∑ k = 1 j τ k = 1 \displaystyle B = \tau_1 y_1 + \tau_2 y_2 + \cdots + \tau_j y_j, \, \sum_{k = 1}^j \tau_k = 1 B=τ1y1+τ2y2++τjyj,k=1jτk=1
那么,对于 α ∈ [ 0 , 1 ] \alpha \in [0, 1] α[0,1]

α A + ( 1 − α ) B = α θ 1 x 1 + ⋯ + α θ i x i + ( 1 − α ) τ 1 y 1 + ⋯ + ( 1 − α ) τ j y j \alpha A + (1 - \alpha) B = \alpha \theta_1 x_1 + \cdots + \alpha \theta_i x_i + (1 - \alpha) \tau_1 y_1 + \cdots + (1 - \alpha) \tau_j y_j αA+(1α)B=αθ1x1++αθixi+(1α)τ1y1++(1α)τjyj

所有的 x k , y k x_k, y_k xk,yk 项的系数相加为 α ( θ 1 + θ 2 + ⋯ + θ i ) + ( 1 − α ) ( τ 1 + τ 2 + ⋯ + τ j ) = α + 1 − α = 1 \alpha(\theta_1 + \theta_2 + \cdots + \theta_i) + (1 - \alpha) (\tau_1 + \tau_2 + \cdots + \tau_j) = \alpha + 1 - \alpha = 1 α(θ1+θ2++θi)+(1α)(τ1+τ2++τj)=α+1α=1

从而, α A + ( 1 − α ) B ∈ c o n v   C \alpha A + (1 - \alpha) B \in \mathbf{conv} \, C αA+(1α)BconvC。这就证明了 c o n v   C \mathbf{conv} \, C convC 是一个 convex set。

事实上, c o n v   C \mathbf{conv} \, C convC 是所有包含 C C C 的 convex sets 当中最小的那个。也就是说,如果 C ⊆ B C \subseteq B CB,且 B B B 是一个 convex set,那么 c o n v   C ⊆ B \mathbf{conv} \, C \subseteq B convCB

这个证明也很直接。这里就从略了。

同样的,我们可以把 convex 换成 affine,上述定义和结论对于 affine 的情况也是成立的。

什么是 convex cone

为了定义 convex cone,我们先来定义 cone。

什么是 cone

定义: 一个集合 C ∈ R n C \in \mathbb{R}^n CRn, 如果对任意 x ∈ C x \in C xC,以及任意 θ ≥ 0 \mathbb{\theta \geq 0} θ0,我们都有 θ x ∈ C \theta x \in C θxC,那么集合 C C C 就是一个 cone。

通过定义我们发现,原点 0 \mathbb{0} 0 肯定是属于一个 cone 的。

什么是 convex cone

而对于 convex cone,其定义就是 如果一个集合 C ∈ R n C \in \mathbb{R}^n CRn 既是一个 convex set,而且还是一个 cone,那么这个集合就是 convex cone。

对于 convex cone,我们有下面的一个性质。

如果集合 C C C 是一个 convex cone,那么对于任意 x 1 , x 2 ∈ C x_1, x_2 \in C x1,x2C, 以及任意 θ 1 ≥ 0 ,   θ 2 ≥ 0 \theta_1 \geq 0, \, \theta_2 \geq 0 θ10,θ20, 我们有 θ 1 x 1 + θ 2 x 2 ∈ C \theta_1 x_1 + \theta_2 x_2 \in C θ1x1+θ2x2C

怎么证明这个结论呢?因为 C C C 是一个 cone,所以对于任意 λ ≥ 0 ,   μ ≥ 0 \lambda \geq 0, \, \mu \geq 0 λ0,μ0,我们有 λ x 1 ∈ C \lambda x_1 \in C λx1C, μ x 2 ∈ C \mu x_2 \in C μx2C。而 C C C 又是一个 convex set,于是对于任意 α ∈ [ 0 , 1 ] \alpha \in [0, 1] α[0,1],我们有 α λ x 1 + ( 1 − α ) μ x 2 ∈ C \alpha \lambda x_1 + (1 - \alpha) \mu x_2 \in C αλx1+(1α)μx2C。注意这里 λ ,   μ \lambda, \, \mu λ,μ 可以是任意实数,而 α \alpha α 是任意在 [0, 1] 之间的实数。从而对于任意 θ 1 , θ 2 ≥ 0 \theta_1, \theta_2 \geq 0 θ1,θ20,我们总可以找到 λ ,   μ \lambda, \, \mu λ,μ 以及 α \alpha α,使得

{ θ 1 = α λ θ 2 = ( 1 − α ) μ \begin{cases} \theta_1 = \alpha \lambda \\ \theta_2 = (1 - \alpha) \mu \end{cases} {θ1=αλθ2=(1α)μ

从而,对于任意 θ 1 ≥ 0 ,   θ 2 ≥ 0 \theta_1 \geq 0, \, \theta_2 \geq 0 θ10,θ20,我们就证明了 θ 1 x 1 + θ 2 x 2 ∈ C \theta_1 x_1 + \theta_2 x_2 \in C θ1x1+θ2x2C

参考文献

Convex optimization, Chapter 1, Stephen Boyd, Lieven Vandenberghe, Cambridge University Press, (2004)

  • 9
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值