一、FMCW 2D FFT处理
在经过上述Range-fft以及doppler-fft后,可以得到雷达矩阵,接下来以一帧(N个Chirps)为例,如下图所示。N个Chirps分别被存储为矩阵的行,矩阵即为ADC数据。
对上方右侧的图进行FFT变换得到下方的Range-fft图,图中灰色部分代表此处有物体,一个行有多少列取决于DSP采样率,注意横坐标为频率,但频率和range可以转化,所以此处用range代替。
对列进行FFT变换得到doppler-fft图,如下图所示,可以看到第三个距离单元有两个不同速度的物体,第八个距离单元有三个速度不同的物体。y轴实际上是与多普勒对应的离散角频率,由于离散角频率与速度成正比,可以等效用速度表示。由此就是2D-FFT。
二、速度公式以及距离公式
上述式子可以看出,最大速度只与两个chirp的间隔有关,速度分辨率只与一帧的长度有关,距离分辨率只与chirp的带宽有关,中频信号的最大频率与斜率以及最大距离有关,中频信号的最大频率又影响着ADC采样率Fs。
三、物体反射强度对雷达测最大距离的影响
1、功率
限制雷达最大测距的因素,其一是ADC的采样频率Fs,其二是物体反射的强度,以便能被雷达检测到。
上图所示Pt为雷达发射功率,可以看到功率谱密度与距离的平方成反比,距离越大,密度越稀疏。
功率谱密度提升可以通过增大天线的方向性。如下图所示。
2、信噪比
接收器是否可以接收到信号,除了信号功率外,还取决于信噪比。其中F是雷达内部的噪声系数
最小信噪比一般在15dB-20dB之间,根据最小信噪比可以求出雷达检测的最大距离
四、角度估计
当距离和速度都相同的两个物体,如何区分?我们利用角度去估计。下图是等距同速两个物体的2D-FFT结果,可以看到只有一个阴影块,具有单个峰值。一般情况下使用多个天线来估计到达角。
1、AOA
角度估计至少需要两个RX天线,物体到每个天线的不同距离会导致2D-FFT峰值发生相位变化,利用相位变化来估计到达角。
以两个天线为例,在距离和速度部分都已知,但多天线时,这将在后面解释。
如上图所示,不同的天线接受角会有不同, 每个Rx天线的2D-FFT将在相同位置具有不同的相位峰值,测得的相位差可以用于估计物体的到达角度。
因为的敏感度会随的增大而减小,呈现一个正弦函数的周期性变化,因此与不是线性关系。,最敏感,,=0,因此角度估计在最准确。
2、视场角
在雷达左侧的物体,,雷达右侧的物体,根据速度的显示,因此结合1中的公式推导:
当d为时,获得最大视场角(+-90°)。
3、角度估计(多天线 3D-FFT)
如上图所示,对2D-FFT峰值对应的相量序列进行FFT可以解析,称作角度FFT。
4、角度分辨率
表示为两个物体在角度FFT中显示为单峰的最小角度间隔,分辨率通常假设以及的情况下:
下图是对上式的推导
五、角度与速度对比
雷达固有优势是距离和速度分辨率,一般用到角度分辨的情况不多,因为两个物体完全等距的情况极小,而且当距离分辨率高的时候 ,信号就很有可能被分到单独的bin中,此时就不用角度分辨。如果想区分两个静止的物体,可以移动雷达,产生相对于两个物体不同的速度,可以成功区分。