【FMCW雷达基础知识篇】二

一、FMCW 2D FFT处理

在经过上述Range-fft以及doppler-fft后,可以得到雷达矩阵,接下来以一帧(N个Chirps)为例,如下图所示。N个Chirps分别被存储为矩阵的行,矩阵即为ADC数据。

对上方右侧的图进行FFT变换得到下方的Range-fft图,图中灰色部分代表此处有物体,一个行有多少列取决于DSP采样率,注意横坐标为频率,但频率和range可以转化,所以此处用range代替。

对列进行FFT变换得到doppler-fft图,如下图所示,可以看到第三个距离单元有两个不同速度的物体,第八个距离单元有三个速度不同的物体。y轴实际上是与多普勒对应的离散角频率,由于离散角频率与速度成正比,可以等效用速度表示。由此就是2D-FFT。

 二、速度公式以及距离公式

Vmax=\frac{\lambda}{4Tc}

Vres=\frac{\lambda}{2Tf}

dres=\frac{c}{2B}

F_{ifmax}=\frac{S2dmax}{c}

上述式子可以看出,最大速度只与两个chirp的间隔有关,速度分辨率只与一帧的长度有关,距离分辨率只与chirp的带宽有关,中频信号的最大频率与斜率以及最大距离有关,中频信号的最大频率又影响着ADC采样率Fs。

三、物体反射强度对雷达测最大距离的影响

1、功率

限制雷达最大测距的因素,其一是ADC的采样频率Fs,其二是物体反射的强度,以便能被雷达检测到。

上图所示Pt为雷达发射功率,可以看到功率谱密度与距离的平方成反比,距离越大,密度越稀疏。

功率谱密度提升可以通过增大天线的方向性。如下图所示。

2、信噪比

接收器是否可以接收到信号,除了信号功率外,还取决于信噪比。其中F是雷达内部的噪声系数

最小信噪比一般在15dB-20dB之间,根据最小信噪比可以求出雷达检测的最大距离

四、角度估计

当距离和速度都相同的两个物体,如何区分?我们利用角度去估计。下图是等距同速两个物体的2D-FFT结果,可以看到只有一个阴影块,具有单个峰值。一般情况下使用多个天线来估计到达角。

1、AOA

角度估计至少需要两个RX天线,物体到每个天线的不同距离会导致2D-FFT峰值发生相位变化,利用相位变化来估计到达角。 

以两个天线为例,在距离和速度部分都已知\omega =\frac{4\pi \Delta d}{\lambda},但多天线时\omega =\frac{2\pi \Delta d}{\lambda},这将在后面解释。

如上图所示,不同的天线接受角会有不同, 每个Rx天线的2D-FFT将在相同位置具有不同的相位峰值,测得的相位差可以用于估计物体的到达角度。

因为sin\theta的敏感度会随\theta的增大而减小,呈现一个正弦函数的周期性变化,因此\omegasin\theta不是线性关系。\theta =0\omega最敏感,\theta =90°\omega=0,因此角度估计在\theta =0最准确。

2、视场角

在雷达左侧的物体,\omega>0,雷达右侧的物体\omega<0,根据速度的显示|\omega|<180°,因此结合1中的公式推导:

\frac{2\pi dsin\theta}{\lambda}<\pi \Rightarrow \theta<sin^{-1}(\lambda/2d)

\theta_{max}=sin^{-1}(\frac{\lambda}{2d})

当d为\lambda/2时,获得最大视场角(+-90°)。

3、角度估计(多天线 3D-FFT)

 如上图所示,对2D-FFT峰值对应的相量序列进行FFT可以解析,称作角度FFT。

4、角度分辨率

表示为两个物体在角度FFT中显示为单峰的最小角度间隔,分辨率通常假设d=\lambda/2以及\theta =0的情况下:

\theta_{res}=\frac{\lambda}{Ndcos\theta}

下图是对上式的推导

五、角度与速度对比

雷达固有优势是距离和速度分辨率,一般用到角度分辨的情况不多,因为两个物体完全等距的情况极小,而且当距离分辨率高的时候 ,信号就很有可能被分到单独的bin中,此时就不用角度分辨。如果想区分两个静止的物体,可以移动雷达,产生相对于两个物体不同的速度,可以成功区分。

### FMCW雷达原理 调频连续波(FMCW雷达通过发射经过线性调制的连续波信号来实现距离和速度的测量。具体而言,在FMCW模式下,雷达将调制后的连续波以较高载频发射出去,当该信号遇到目标物体会发生反射形成回波信号。接收端会对接收到的回波信号与当前正在发送的高频信号进行混频操作,从而获得携带有关目标位置信息的差频信号[^3]。 对于线性调频的情况,由于存在固定的斜率关系,因此可以通过分析所得差频频率直接推算出目标到雷达之间的实际距离。此外,如果目标处于移动状态,则除了上述由距离引起的固定频率偏移外还会叠加一个多普勒效应造成的额外频率变化,这使得可以从同一组数据中同时获取目标的速度信息[^4]。 ```python import numpy as np from matplotlib import pyplot as plt def fmcw_signal(t, T_chirp, B, fc): """Generate an idealized FMCW signal.""" k = B / T_chirp # Frequency slope of the chirp return np.exp(1j * 2 * np.pi * (fc*t + 0.5*k*(t%T_chirp)**2)) # Parameters for simulation sample_rate = 1e6 # Sampling rate in Hz duration = 0.1 # Duration of each chirp period in seconds bandwidth = 79e9 # Bandwidth swept during one chirp cycle in Hertz center_frequency = 77e9 # Center frequency of radar operation in Hertz time_vector = np.arange(0, duration, 1/sample_rate) signal = fmcw_signal(time_vector, duration, bandwidth, center_frequency) plt.figure(figsize=(8, 4)) plt.plot(time_vector[:int(sample_rate*0.001)], abs(signal)[:int(sample_rate*0.001)]) plt.title('Magnitude of Generated FMCW Signal') plt.xlabel('Time [s]') plt.ylabel('|Signal|') plt.grid(True) plt.show() ``` 此图展示了理想化的FMCW信号幅度随时间的变化情况。可以看到随着周期性的频率扫描过程,信号呈现出特有的锯齿形特征曲线。 ### 应用领域 #### 生命体征监测 利用FMCW雷达可以精确感知人体微动特性如呼吸心跳等细微动作,进而用于健康监护设备之中。这种非接触式的探测方式不仅提高了用户体验还增强了隐私保护能力[^1]。 #### 车载毫米波雷达行人识别算法 现代汽车安全系统广泛采用FMCW技术构建高级驾驶辅助系统(ADAS)。其中特别针对行人的检测提出了多种高效的算法模型,旨在提升道路行驶安全性并减少交通事故的发生概率。 #### 基于Zynq平台的信号处理系统开发 为了满足实时性和灵活性的需求,许多研究致力于探索如何借助可编程逻辑器件比如Xilinx Zynq SoC架构来进行高效的数据采集与预处理工作。这类硬件解决方案能够显著降低功耗的同时保持高性能运算效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值