一、相关概念
1、Chirp
FMCW(调频连续波)技术应用于雷达检测中,基本原理为发射波是高频连续波,频率随时间规律变化。FMCW雷达发射出的信号就是一个Chirp(线性调频脉冲),Chirp信号如下图所示,是一个频率随时间线性增加的正弦波。
图1为时域Chirp图,图2为频域Chirp图,其中为频率(77GHz-81GHz),B为带宽,
为一个Chirp的持续时间,S为Chirp的斜率(Chirp上升的速度)。图2中表示Chirp在40us内扫描了4GHz的带宽,对应于100MHz/us斜率。
2、雷达发射原理
如图所示为雷达发射原理,流程大体为:
①生成Chirp信号,经过②将Chirp信号发射出去,当碰到障碍物信号返回,③进行接收,将接收到的信号与发射信号进行④混频,混频后的信号为中频IF信号输出。将混频器建模如下图所示,假设输入信号为
则输出
二、IF信号的距离 (Range-FFT)
1、IF中频信号
上图1显示了单物体发射信号与接收信号的频域图,可以发现接收信号只是发射信号的延迟,其中为雷达和物体之间的往返时间,混频器输出IF信号的频率就是Tx与Rx瞬时频率之差:
,上述频率即为雷达前单个物体产生的恒定频率。
2、多物体反射
因为与雷达的距离不同,多个物体将会反射多个IF信号,每个IF信号的频率都有所不同,转为频域会观察到多个不同的峰值,代表不同的反射物体。
通过以往实验可以发现,如果两个时域波形相差很近的情况下,频域无法成功分辨处两个波形,如下图所示。在一个观察窗T内,红色完成两个周期,蓝色完成2.5个周期,但频域只有一个峰值。
增加观察窗口的时间T为2T,可以发现观察时间越长,分辨率越高。如下图所示,2T观察窗内成功分辨出两个峰值。一般来说T的观察窗可以分离出间隔大于1/THz的频率分量。
通过上述发现,我们可以认识到雷达在识别多个物体时也会存在分辨率的问题,如果两个物理距离过近,达到某个限制时是分辨不出的,在此引入距离分辨率(Range Resolution)这一概念。
3、距离分辨率
距离分辨率是指分辨两个很近物体的能力,如上图所示,如果两个物体太近,则在频域中为同一个峰值。要想成功分辨出两个物体,可以借鉴上面的方法,增大观察时间T,在此处则为增大IF信号的长度。增大IF信号的长度会成比例的增加带宽,因此可以推出带宽越大,分辨率越高,如下图所示。
因此,通过1和2中的描述,我们已知IF信号的频率以及T的观察窗可以分离出间隔大于1/THz的频率分量这两点,则可以推出距离分辨率(假设观察窗长为T,带宽为B,扫描斜率为S,IF信号频率为
),距离分辨率和带宽B有关。
4、IF信号采样率
一般IF信号通常被数字化(LPF+ADC)以便在DSP上进一步处理,ADC过程中涉及采样率的问题。在测量多个物体时有多个IF频率,如上图所示,我们可以求出最大的IF频率,
因此,避免混叠现象的发生,ADC采样率:
(这里不太明白为什么不是大于2倍的
)
因此,ADC采样率限制了雷达最大测量距离:
5、总结(range-FFT/single or multiple)
Chirp的带宽B越大,距离分辨率d越小,分辨能力越好。
IF中频带宽越大(多个物体时最大IF越大),ADC采样率Fs越高,则分辨的最大距离dmax越大。
三、IF信号的相位
解决距离分辨率问题后,迎来新的问题,我们知道大于距离分辨率的两个物体在频域可以区分开,那么相同距离的两个物体如何在频域区分开呢?如下图所示,距离相同的两个物体,频域也只有一个峰值。在此引入新的方法,我们利用IF信号的相位去区分两个距离相同的物体。
1、两个相同距离物体的相位
如上图所示,一般来说频域信号一个复数(幅值+相位),除了峰值以外还存在相位量,峰值的相位等于正弦曲线的初始相位,上图中两个波形时域相差90°,频域处峰值的相位也相差90°。
前边提到过,混频器输出的IF信号是一个具有固定频率的正弦信号,相位是两个输入信号的相位差。公式如下图所示。
2、物体移动微小距离的相位(检测心跳等基础)
上图1是原始物体的相位情况,图2是物体微小变化后的相位情况(蓝色表示),RX信号位移改变,则F的相位为D的相位与E的相位之差,移动后E与B的相位一样,但D与A、C与F存在相位偏移。
上图给出了一个微小位移的例子,从例子可以看出移动1mm时位移有180°的变化,但频率中的变化相对于整个观察周期T来说很小,在频域中没有显示。 因此相位对物体微小变化非常敏感,频率不敏感,相位变化情况可以由下图解释。
3、估计物体速度
发射两个距离为Tc的chirps可以测物体的速度,两个Chirp的频域在相同的位置具有峰值,但是相位是不同的。两个峰值对应的相位差将直接对应物体的运动速度。如果物体的速度为v,那么Tc时间内物体移动的距离为vTc。
如果是振动的物体,比如测呼吸类的,可以通过测相位得到最大相移,通过相移得到振动的幅度和周期。如下图所示。
四、速度测量(Doppler-FFT)
多个物体与雷达等距,但相对于雷达的速度是不同的,要想区分这些目标,引出“多普勒-FFT”分离出相对于雷达具有不同速度的等距物体。
1、 离散傅里叶变换
考虑离散信号,任意两个样本之间旋转弧度,对离散信号进行FFT会产生一个在
位置的峰值。
如果信号由两个相量和组成,那么FFT有两个峰值,如下图所示。
2、离散信号频域分辨率
,在N个样本上,第二个相量与第一个相量差半个周期(
),如下图所示。差半个周期无法分辨出两个相量。
在2N个样本上,第二个相量与第一个相量差一个周期(),如下图所示。差一个周期可以成功分辨出两个相量。
可以和上面测距离的对比,离散情况下,序列越长,速度分辨率越好。长度为N的序列可以分离相距超过 rad/sample的角频率。
连续信号频域分辨率:
离散信号频域分辨率:
3、速度测量
和上一章讲述的一样,发送两个间隔为Tc的Chirps,每个Chirp对应的频域在同一位置具有相同的峰值,但相位不同,最小的相位差应该满足2中的要求,以此可以分辨出不同的物体。
4、最大速度限制
从上图可知,最大测量速度旋转的弧度要小于pi,因此可推导两个间隔为Tc的Chirps测量的最大相对速度为:
5、同距离多目标速度测量
两个物体距离雷达相同距离处,会产生相同的峰值以及不同的相位,前面所述当N个样本时可以分辨的角频率。因此发送N个等Tc间距的Chirps(又叫一帧Frame),得到Range-FFT的图,对Range-FFT再次进行FFT变换,可得到doppler-FFT图,这样可以成功区分两个相量,因为doppler-FFT图中有两个峰值,横坐标分别代表不同的相位,两个峰值代表两个物体不同的速度。如下图所示。
6、速度分辨率
如上图所示,速度分辨率与帧时间成反比,上面提到过,此时Tf=2Tc,因为是假设发送两个Chirps。由此可以推出
Tf是一帧的长度,等于NTc,以上就是FMCW雷达的一维以及二维FFT解释。