以下是在Detectron2中进行模型训练的步骤:
解决思路
- 准备数据集:将数据集整理为Detectron2支持的格式,通常需要将数据集标注转换为COCO格式或其他Detectron2可识别的格式。
- 配置训练参数:包括选择合适的模型配置文件、设置训练超参数(如学习率、迭代次数、批大小等)、数据增强方式等。
- 定义数据集的注册函数:将准备好的数据集注册到Detectron2的数据集目录中,以便Detectron2能够正确加载数据。
- 加载模型:根据任务需求选择合适的预训练模型或自定义模型架构。
- 开始训练:调用训练器开始训练过程,并设置好训练过程中的监控和日志记录。
代码示例
import logging
import os
from detectron2.data.datasets import register_coco_instances
from detectron2.engine import DefaultTrainer
from detectron2.config import get_cfg
# 1. 准备数据集
# 假设你的数据集标注文件为 train.json 和 val.json,图像存储在 images 目录下
# 将数据集注册到Detectron2中
register_coco_instances("my_dataset_train", {}, "path/to/train.json", "path/to/images")
register_coco_instances("my_dataset_val", {}, "path/to/val.json", "path/to/images")
# 2. 配置训练参数
cfg = get_cfg()
# 从Detectron2的模型库中选择一个配置文件,这里以实例分割的Mask R-CNN为例
cfg.merge_from_file("detectron2/model_zoo/configs/coco-instance_segmentation/mask_rcnn_r_50_fpn_3x.yaml")
# 设置数据集
cfg.DATASETS.TRAIN = ("my_dataset_train",)
cfg.DATASETS.VAL = ("my_dataset_val",)
# 选择预训练模型权重
cfg.MODEL.WEIGHTS = "detectron2://coco-instance_segmentation/mask_rcnn_r_50_fpn_3x/137849600/model_final_f10217.pkl"
# 设置训练时的批大小
cfg.SOLVER.IMS_PER_BATCH = 2
# 设置训练的迭代次数
cfg.SOLVER.MAX_ITER = 3000
# 设置学习率
cfg.SOLVER.BASE_LR = 0.00025
# 设置学习率调整策略
cfg.SOLVER.STEPS = (2000,)
cfg.SOLVER.GAMMA = 0.1
# 每多少个迭代保存一次模型
cfg.SOLVER.CHECKPOINT_PERIOD = 500
# 设置类别数,根据自己的数据集调整
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
# 3. 开始训练
# 创建训练器
trainer = DefaultTrainer(cfg)
# 开始训练
trainer.train()
代码解释
- 注册数据集:
register_coco_instances
函数将你的自定义数据集注册到Detectron2中,它接收数据集名称、元数据、标注文件路径和图像文件路径作为参数。这样Detectron2就可以通过名称找到并加载你的数据集。
- 配置训练参数:
get_cfg()
用于获取一个配置对象,merge_from_file
会从Detectron2的模型库中加载一个基础的配置文件。cfg.DATASETS.TRAIN
和cfg.DATASETS.VAL
分别设置训练集和验证集的名称,它们应该是你在注册数据集时使用的名称。cfg.MODEL.WEIGHTS
选择一个预训练的模型权重作为训练的起点,也可以使用空字符串表示从随机初始化开始训练。cfg.SOLVER.IMS_PER_BATCH
表示每批处理的图像数量。cfg.SOLVER.MAX_ITER
表示训练的最大迭代次数。cfg.SOLVER.BASE_LR
表示初始学习率。cfg.SOLVER.STEPS
是学习率调整的步骤,当迭代次数达到该值时,学习率会根据cfg.SOLVER.GAMMA
进行调整。cfg.SOLVER.CHECKPOINT_PERIOD
表示每多少个迭代保存一次模型检查点。cfg.MODEL.ROI_HEADS.NUM_CLASSES
表示数据集中的类别数,需要根据自己的数据集进行调整。
- 开始训练:
DefaultTrainer(cfg)
创建一个训练器对象,使用配置好的cfg
。trainer.train()
开始训练过程,在训练过程中会自动保存检查点,同时会在终端输出训练日志。
注意事项
- 确保你的数据集标注文件格式正确,特别是对于COCO格式,需要包含正确的类别、标注信息等。
- 根据自己的计算资源调整
cfg.SOLVER.IMS_PER_BATCH
,以避免内存溢出。 - 对于不同的任务(如目标检测、关键点检测等),需要选择不同的模型配置文件,并相应地调整
cfg.MODEL.ROI_HEADS.NUM_CLASSES
等参数。 - 可以通过设置
cfg.OUTPUT_DIR
来指定训练输出的目录,默认为output
。
通过以上步骤,你可以在Detectron2中完成模型的训练过程,在训练结束后,可以使用训练好的模型进行推理和评估。