如何在Detectron2中进行模型训练?

以下是在Detectron2中进行模型训练的步骤:

解决思路

  1. 准备数据集:将数据集整理为Detectron2支持的格式,通常需要将数据集标注转换为COCO格式或其他Detectron2可识别的格式。
  2. 配置训练参数:包括选择合适的模型配置文件、设置训练超参数(如学习率、迭代次数、批大小等)、数据增强方式等。
  3. 定义数据集的注册函数:将准备好的数据集注册到Detectron2的数据集目录中,以便Detectron2能够正确加载数据。
  4. 加载模型:根据任务需求选择合适的预训练模型或自定义模型架构。
  5. 开始训练:调用训练器开始训练过程,并设置好训练过程中的监控和日志记录。

代码示例

import logging
import os
from detectron2.data.datasets import register_coco_instances
from detectron2.engine import DefaultTrainer
from detectron2.config import get_cfg


# 1. 准备数据集
# 假设你的数据集标注文件为 train.json 和 val.json,图像存储在 images 目录下
# 将数据集注册到Detectron2中
register_coco_instances("my_dataset_train", {}, "path/to/train.json", "path/to/images")
register_coco_instances("my_dataset_val", {}, "path/to/val.json", "path/to/images")


# 2. 配置训练参数
cfg = get_cfg()
# 从Detectron2的模型库中选择一个配置文件,这里以实例分割的Mask R-CNN为例
cfg.merge_from_file("detectron2/model_zoo/configs/coco-instance_segmentation/mask_rcnn_r_50_fpn_3x.yaml")
# 设置数据集
cfg.DATASETS.TRAIN = ("my_dataset_train",)
cfg.DATASETS.VAL = ("my_dataset_val",)
# 选择预训练模型权重
cfg.MODEL.WEIGHTS = "detectron2://coco-instance_segmentation/mask_rcnn_r_50_fpn_3x/137849600/model_final_f10217.pkl"
# 设置训练时的批大小
cfg.SOLVER.IMS_PER_BATCH = 2
# 设置训练的迭代次数
cfg.SOLVER.MAX_ITER = 3000
# 设置学习率
cfg.SOLVER.BASE_LR = 0.00025
# 设置学习率调整策略
cfg.SOLVER.STEPS = (2000,)
cfg.SOLVER.GAMMA = 0.1
# 每多少个迭代保存一次模型
cfg.SOLVER.CHECKPOINT_PERIOD = 500
# 设置类别数,根据自己的数据集调整
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2  

# 3. 开始训练
# 创建训练器
trainer = DefaultTrainer(cfg)
# 开始训练
trainer.train()

代码解释

  • 注册数据集
    • register_coco_instances 函数将你的自定义数据集注册到Detectron2中,它接收数据集名称、元数据、标注文件路径和图像文件路径作为参数。这样Detectron2就可以通过名称找到并加载你的数据集。
  • 配置训练参数
    • get_cfg() 用于获取一个配置对象,merge_from_file 会从Detectron2的模型库中加载一个基础的配置文件。
    • cfg.DATASETS.TRAINcfg.DATASETS.VAL 分别设置训练集和验证集的名称,它们应该是你在注册数据集时使用的名称。
    • cfg.MODEL.WEIGHTS 选择一个预训练的模型权重作为训练的起点,也可以使用空字符串表示从随机初始化开始训练。
    • cfg.SOLVER.IMS_PER_BATCH 表示每批处理的图像数量。
    • cfg.SOLVER.MAX_ITER 表示训练的最大迭代次数。
    • cfg.SOLVER.BASE_LR 表示初始学习率。
    • cfg.SOLVER.STEPS 是学习率调整的步骤,当迭代次数达到该值时,学习率会根据 cfg.SOLVER.GAMMA 进行调整。
    • cfg.SOLVER.CHECKPOINT_PERIOD 表示每多少个迭代保存一次模型检查点。
    • cfg.MODEL.ROI_HEADS.NUM_CLASSES 表示数据集中的类别数,需要根据自己的数据集进行调整。
  • 开始训练
    • DefaultTrainer(cfg) 创建一个训练器对象,使用配置好的 cfg
    • trainer.train() 开始训练过程,在训练过程中会自动保存检查点,同时会在终端输出训练日志。

注意事项

  • 确保你的数据集标注文件格式正确,特别是对于COCO格式,需要包含正确的类别、标注信息等。
  • 根据自己的计算资源调整 cfg.SOLVER.IMS_PER_BATCH,以避免内存溢出。
  • 对于不同的任务(如目标检测、关键点检测等),需要选择不同的模型配置文件,并相应地调整 cfg.MODEL.ROI_HEADS.NUM_CLASSES 等参数。
  • 可以通过设置 cfg.OUTPUT_DIR 来指定训练输出的目录,默认为 output

通过以上步骤,你可以在Detectron2中完成模型的训练过程,在训练结束后,可以使用训练好的模型进行推理和评估。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值