惯性导航算法(一)

惯导机械编排算法

预备知识

image-20221102204801385 image-20221102204928595 image-20221102205644140 image-20221102212123016

欧拉角法

image-20221102212739448 image-20221102212955069 image-20221102220857730

这里务必注意:欧拉角正方向定义是从R系->b系 ,即从参考系->当前的载体系

image-20221102220835356

欧拉角微分方程

建立 陀螺输出的w与欧拉角微分的关系 (后续因欧拉角限制不会使用)

image-20221104191104431

方向余弦矩阵

image-20221104204609060 image-20221104211322950

方向余弦阵性质

image-20221104211425823 image-20221104222130231

理解:

DCM小角度时,

image-20221105104155205

C b R = I + ( α R b × ) C_b^R = I + (\alpha_{Rb} \times) CbR=I+(αRb×)

C b ( t k ) t ( k − 1 ) = I + Δ θ b t ( k − 1 ) b t k × C_{b(tk)}^{t(k-1)} = I + \Delta \theta_{b_{t(k-1)}b_{t_{k}}}\times Cb(tk)t(k1)=I+Δθbt(k1)btk×

方向余弦矩阵的微分方程

image-20221105110828531

但实际完成姿态更新时,由于陀螺输出的角速度是 ω i b b \omega_{ib}^{b} ωibb ω R b b \omega_{Rb}^{b} ωRbb,需要补偿掉i系与n系之间的地球自转和牵连角速度

微分方程的求解

image-20221105210014487 image-20221105214159395

以上计算前提是假设b系相对于R系角速度方向保持不变

四元数

image-20221105221455105 image-20221105221942499 image-20221105222043072 image-20221105222130362 image-20221105222257288

注意:

纯虚四元数乘法,分块矩阵方法:(实部 + 虚部)

image-20221106093006903 image-20221106093448197 image-20221106093632379 image-20221106093815450

四元数共轭 <==> 矩阵转置

四元数逆 <==> 矩阵的逆

四元数的三角函数表示

image-20221106100632895 image-20221106100808025

模长为1的四元数 可以表示 三维空间的姿态旋转

可以等价理解为 模长为1的复数可以 表示二维空间的旋转

p = ∣ ∣ l e n g t h ∣ ∣ e i θ , w h e n l e n g t h = 1 , p c o u l d o n l y d e s c r i b e p o s e i n 2 − d i m e n s i o n s p a c e p = ||length||e^{i\theta}, when length = 1, p could only describe pose in 2-dimension space p=lengtheiθ,whenlength=1,pcouldonlydescribeposein2dimensionspace

四元数算子证明*

image-20221106100955602
  • 欧拉旋转定理
image-20221106101121401

姿态四元数

image-20221106103122759

一般做姿态投影都转化为 方向余弦阵,考虑到向量旋转投影变换四元数乘法需要做两次

四元数的微分方程

image-20221106194405232 image-20221106194611882 image-20221106194934204

四元数和DCM更新时的 不可交换误差 问题

image-20221106195246560 image-20221106195707702

等效旋转矢量

image-20221108223624637

image-20221108223739153

image-20221108224140066

image-20221108224714999

image-20221108225538847

image-20221108230621257

image-20221108232036193

image-20221108232536856

圆锥误差补偿:载体在做圆锥运动时,不可交换误差补偿项较大

姿态更新算法小结

image-20221113085240825

更正: 蓝色字体第二点 增量应为w_in^{n},因为是n系的更新。

image-20221113090050457
  1. 这里边用到了w_ie^{n},需要载体速度V_E,V_N
  2. 初始姿态由初始对准算法给定
image-20221113091619547

姿态表达根本上是为了向量投影,实际常用方向余弦矩阵和四元数

RV仅用在多子样算法补偿不可交换误差的情况

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值