INS的初始化
- INS的初始位置、速度必须由外界其他系统给定
- 但初始姿态可以由初始对准给出
静态粗对准
-
通过 载体上 横滚、俯仰方向加计可以计算出水平面偏转情况,但航向方向与加计重力轴共线,无法计算出航向
-
地球自转角速度在当地可以分解为 北向和垂向 角速度,其中垂向角速度与航向无关,但北向角速度原则上可以敏感航向
(陀螺粗对准 <=> 陀螺寻北 <=> 陀螺找平)
加速度计调平
陀螺罗盘
陀螺粗对准误差(初始对准航向精度):
以战术级陀螺为例,测量精度约为 1 ° / h 1\degree /h 1°/h
δ ϕ = δ ω w e c o s ϕ = 1 ° / h 10 ° / h = 0.1 r a d / s = 5.7 ° \delta \phi = \frac {\delta \omega}{w_e cos \phi} = \frac {1\degree /h}{10\degree /h} = 0.1 rad/s = 5.7\degree δϕ=wecosϕδω=10°/h1°/h=0.1rad/s=5.7°
==> 战术级惯导基本无法实现高精度的初始导航对准
思考
==> 纬度对陀螺罗盘的影响非常大
直观描述:
在纬度相同的点,考察平均时间、ARW与陀螺误差的关系
陀螺初始对准精度影响因素总结
静态解析粗对准–双矢量定姿算法
实际解算时:
考虑到IMU实际测量w不准可能存在向量不正交,进而有数值稳定性问题,先对参与解算的矢量做单位化和正交化处理:
姿态阵->姿态角计算: