探秘 AI 原生应用开发:〈提示工程原理与实战〉研读笔记系列
🛒 京东图书:https://item.jd.com/14976580.html
最近,我阅读了《AI
原生应用开发:提示工程原理与实战》一书,它为我打开了大语言模型与提示工程领域的新视野。为了更好地消化书中的知识,加深对相关内容的理解,我决定撰写一系列的读书笔记。
一、核心内容概述
本文聚焦大语言模型的推理能力,深入探讨如何运用思维链提示工程技术提升其推理性能。随着大语言模型在多领域广泛应用,其推理能力的优化成为关键。文章围绕推理提示展开,详细介绍了基础、进阶和高阶思维链提示技巧,分析了不同提示方法的特点、应用场景及优劣,还创新性提出自由辩论提示和圆桌会议提示,旨在为AI原生应用的推理任务提供有效技术支撑。
二、重点知识梳理
(一)大语言模型推理基础
- 推理能力发展历程:人类利用计算机科学进行推理,从早期符号逻辑推理系统(如Prolog、MYCIN),到神经网络,再到大语言模型,技术不断演进。大语言模型凭借“涌现能力”,能完成多种复杂任务,但该能力受模型参数和提示方式影响,不稳定。
- 基础思维链提示技术
- 零样本提示:利用预训练模型直接执行任务,无需示例样本,通过设计合适指令引导输出。优点是灵活,缺点是提示质量影响大,易受干扰出错。
- 少样本提示:在输入中添加范例样本,让模型依示例规律学习输出。在简单任务表现较好,但复杂推理任务仍有局限,且样例的选择、排列等因素影响模型性能。
- 少样本思维链提示:在少样本提示基础上增加思维链,形成<问题,思维链,答案>三元组,引导模型学习推理过程,提高推理性能。
- 零样本思维链提示:用通用触发器代替人工设计样例,分为两阶段(推理抽取和答案抽取)和一阶段(一步到位思考推论并给出答案)两种实现方式,能提高部分推理任务性能,但受模型知识和触发器限制。
(二)进阶思维链提示技术
- 思维表提示:借助表格形式分步推理,将问题拆分为步骤,以表格呈现事件和答案,让模型依据表格生成最终答案。具有推理过程明晰有序、可多角度推理的优点,但依赖人类先验知识设计表格,且受模型限制。
- 自我一致提示:利用大语言模型多样性解决复杂推理问题,通过推理生成、多路采样和答案选择三个阶段,模拟人类多重视角和统一性,提高输出质量,但计算资源和时间消耗大,不适合创意或主观性任务。
- 由少至多提示:将复杂问题自顶向下分解为简单子问题,利用模型自动生成子问题及答案,再汇总得出最终结论,克服了人工设计思维链的局限,可应对新问题。
- 自问自答提示:通过让模型自我提问和回答,将复杂问题细化为子问题解决,可结合大语言模型内置知识或外部检索工具获取答案,提高思维链质量和可解释性,增强泛化能力。
(三)高阶思维链提示技术
- 思维树提示:针对大语言模型处理复杂问题时缺乏全局规划和回溯能力的问题,将问题求解过程用树形结构表示,通过问题拆解、扩展子节点(想法生成和状态评估)和生成答案三个阶段,探索不同路径,自我评估选择最佳方案,适用于多步推理和探索多种可能性的任务。
- 推理 - 行动提示:模拟人类推理和行动融合过程,让大语言模型交替生成推理追踪和行动,并与外部工具交互获取反馈,动态更新行动计划,适用于多种智能体场景,能应对复杂任务挑战。
- 自动思维链提示:利用大语言模型自身生成能力和多样性构建推理示例,减少人工设计工作量。通过构建候选示例样本、候选示例样本聚类、示例采样和生成答案四个阶段,提高模型推理效果。
(四)创新思维链提示技术
- 自由辩论提示:模拟辩论过程,由双方辩手交替发言批判并提出新观点,最后由裁判总结。可激发模型产生更有逻辑、说服力的输出,提高模型处理长文本和复杂问题的能力,适用于有争议性、需多方面考量的问题。
- 圆桌会议提示:模拟圆桌会议场景,由主持人陈述问题,不同角色参会人员轮流发言,最后主持人总结答案。能激发模型产生丰富、深入、有创意的输出,适用于需要多方面知识和观点的任务。
三、学习收获与思考
(一)收获
系统学习了大语言模型推理提示的多种技术,了解到不同提示技术的原理、操作方法及适用场景,掌握了根据问题复杂程度选择合适提示技术的方法,认识到思维链提示技术通过模拟人类思考逻辑,有效激发大语言模型推理潜能,在提升模型推理能力方面具有重要作用。同时,也明白了大语言模型虽有强大能力,但在推理方面仍需不断优化,提示工程技术为其发展提供了关键支持。
(二)思考
不同大语言模型对相同提示方法的响应存在差异,且模型更新可能导致提示失效。在实际应用中,如何根据模型特点和更新情况,快速调整和优化提示策略,以保证推理效果的稳定性,是需要深入研究的问题。随着大语言模型应用场景不断拓展,推理任务的复杂性和多样性增加,现有的提示技术可能无法满足所有需求。如何结合新的技术趋势,如知识图谱、强化学习等,创新提示方法,提升大语言模型在复杂场景下的推理能力,是未来研究的重要方向。此外,在实际业务中应用这些提示技术时,还需考虑成本、效率和可解释性等多方面因素,如何在保障推理效果的同时,平衡这些因素,实现技术与业务的深度融合,也是亟待解决的问题。