CVPR 2024 | DrivingGaussian:环视动态自动驾驶场景重建仿真

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【3DGS和自动驾驶】交流群

添加微信:CVer5555,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

d6cd1952af5905a5df7577fcad9eb7fa.jpeg         

本文介绍了来自北京大学王选计算机研究所的王勇涛团队与其合作者的最新研究成果DrivingGaussian。针对自动驾驶场景,该篇工作提出了一个高效、高质量的动态环视驾驶场景三维重建与仿真框架,在大规模环视动态驾驶场景重建任务上表现出色,论文已被CVPR 2024录用。

99a389efbc82748959cfb3b3102da1ba.png

论文标题:DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving Scenes          
论文:https://arxiv.org/abs/2312.07920          
项目主页:

https://github.com/VDIGPKU/DrivingGaussian

论文概述:

本文提出了DrivingGaussian,一个高效、高质量的动态环视驾驶场景三维重建与仿真框架。对于具有复杂背景和动态物体的室外驾驶场景,DrivingGaussian首先使用增量式3D高斯逐步建模整个场景的复杂静态背景。针对场景中运动的前景物体,DrivingGaussian构建了组合动态高斯图用以表征每个动态前景物体并恢复它们在场景中的准确位置和遮挡关系。DrivingGaussian还首次将LiDAR先验引入3D高斯表征,使用LiDAR点云先验作为初始化以更好地建模大规模环视动态场景的几何结构。DrivingGaussian在环视动态驾驶场景重建任务的表现优于现有方法,能够实现高保真度和多相机一致性的逼真场景重建和环视视图合成。同时在单目驾驶场景的重建任务上DrivingGaussian也表现出了优异的性能,并且能够支持自动驾驶场景的Corner Case仿真生成。

研究背景:

针对复杂动态场景的表征和建模是3D场景感知与理解的基础,并对一系列下游的自动驾驶任务至关重要。同时,对驾驶场景进行重建和可控仿真还能够合成驾驶过程中可能遇到的极端情况(例如corner case),有助于以较低成本验证和增强自动驾驶系统的安全性。另一方面,从稀疏的传感器数据中重建环视动态自动驾驶场景仍然是一个极具挑战性的问题,由于这类场景通常具有大规模的复杂背景和高速移动的动态前景物体,面临多样的光线变化和拓扑结构。因此,研究者们需要一种更加通用且高效的环视动态场景表征与建模方法。

a90369432b6b1306ac88acf3fd2bffaf.png

方法介绍:

为了解决这些关键问题,本文提出了DrivingGaussian,一个用于环视动态自动驾驶场景的三维重建方法,以实现具有高保真和多相机一致性的逼真环视视图合成。DrivingGaussian的整体架构如下图所示:   

2bdb83ff370f8b9680aaca69e3127594.png

对于具有大规模静态背景和多动态物体的复杂驾驶场景,DrivingGaussian首先通过增量式3D高斯逐步建模整个场景的静态背景。然后,我们基于组合动态高斯图建模多个运动对象并恢复它们在场景中的准确位置和遮挡关系。我们进一步利用LiDAR先验辅助建模场景表征的几何结构,结合全局渲染合成具有更高细节的场景视图并保证环视多相机的一致性。

a、增量式3D高斯背景重建

DrivingGaussian首先将动态驾驶场景中的静态背景和动态前景物体解耦,并通过增量式3D高斯建模驾驶场景的大规模静态背景。具体而言,增量式静态3D高斯利用自车运动引入的空间透视变化和相邻帧之间的时序关系将大规模场景划分为多个区域,渐进式地重建多个区域的静态背景并依次融合。增量式3D高斯背景重建能够很好地重建出复杂背景的细节信息,并能够以较低的计算代价重建整个大规模场景。

b、组合动态高斯图前景建模

由于自动驾驶场景往往具有大量的动态物体和复杂的遮挡关系,并且由于自车位移和动态对象的运动导致通常只能从有限的视角观测到实例物体。为了克服这些挑战,DrivingGaussian引入了组合动态高斯图,能够在大规模、长时序的自动驾驶场景中动态地表征建模运动实例。具体地,DrivingGaussian首先从静态背景中分离场景中每一个运动的实例物体。接着,我们构建动态高斯图,用多个独立的4D高斯表征动态物体,并用每个节点记录其在整个场景中的空间时序属性。最终,我们通过组合动态高斯图将全部动态实例物体组合进大规模静态背景,利用全局渲染得到高质量、高精度的合成渲染视图。   

de9601f807d6c06a5a709c0131ac9bce.jpeg

c、LiDAR点云先验

自动驾驶的无边界城市场景通常包含多尺度的背景和前景,具有复杂的拓扑结构和几何形状。为了更好地建模环视动态驾驶场景的几何结构,我们首次为3D高斯表征引入了LiDAR点云先验。考虑到动态前景可能会由于拖尾、混叠等现象导致LiDAR先验的误差。因此,我们首先从LiDAR点云中移除动态对象,获取静态LiDAR点云。然后,我们使用多帧聚合将场景的LiDAR点云作为先验来初始化当前可见区域的增量式3D高斯。LiDAR先验的空间坐标进一步通过校准矩阵转换为全局坐标系。相类似地,我们使用时序聚合的LiDAR点云先验进行动态物体的高斯初始化并在之后统一到全局坐标系中。

实验结果:

本方法主要在主流的环视动态自动驾驶数据集nuScenes上进行实验。DrivingGaussian在环视驾驶数据集nuScenes上与现有最先进的方法比较结果如下表所示:

57addd1308f21d188feb32e9b5fe34eb.png

本文所提出的方法在多个评估指标中均表现出了优异的性能,超越现有方法。我们还测试了DrivingGaussian在单目自动驾驶数据集KITTI-360上的性能和现有方法的比较,结果如下表所示:   

40bf547caeb96906f1f7821f3cd0a66d.png

实验结果表明DrivingGaussian在单目驾驶场景的重建任务上仍然保持了出色的竞争力。

如下图定性实验结果所示,DrivingGaussian能够合成逼真的、具有完整几何结构和清晰纹理的渲染图像,精准地建模动态对象并恢复出正确的空间遮挡关系。此外DrivingGaussian还保证了环视多相机多视角的一致性。

9370f7b4c627f42b961a67cb233b9fc8.png

下图展示了DrivingGaussian能够支持自动驾驶场景的Corner Case仿真模拟,合成现实场景中的突发事件和极端案例,从而生成更具价值的Corner Case数据集用于测试自动驾驶系统的安全性和可靠性。   

5c4e2eaeafd0891dd45695f431a958f1.png

结论:

本文提出了DrivingGaussian,一种基于3D高斯的动态环视驾驶场景三维重建与仿真框架,在大规模环视驾驶场景重建与仿真任务上表现出色,同时展现了在更多自动驾驶下游任务中的应用潜力。    

何恺明在MIT授课的课件PPT下载

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

CVPR 2024 论文和代码下载

在CVer公众号后台回复:CVPR2024,即可下载CVPR 2024论文和代码开源的论文合集

3DGS和自动驾驶交流群成立

 
 
扫描下方二维码,或者添加微信:CVer5555,即可添加CVer小助手微信,便可申请加入CVer-3DGS和自动驾驶微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。
一定要备注:研究方向+地点+学校/公司+昵称(如3DGS或者自动驾驶+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer5555,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CVPR 2019中发表了一篇题为“迁移学习:无监督领域自适应的对比适应网络(Contrastive Adaptation Network for Unsupervised Domain Adaptation)”的论文。这篇论文主要介绍了一种用于无监督领域自适应的对比适应网络。 迁移学习是指将从一个源领域学到的知识应用到一个目标领域的任务中。在无监督领域自适应中,源领域和目标领域的标签信息是不可用的,因此算法需要通过从源领域到目标领域的无监督样本对齐来实现知识迁移。 该论文提出的对比适应网络(Contrastive Adaptation Network,CAN)的目标是通过优化源领域上的特征表示,使其能够适应目标领域的特征分布。CAN的关键思想是通过对比损失来对源领域和目标领域的特征进行匹配。 具体地说,CAN首先通过一个共享的特征提取器来提取源领域和目标领域的特征表示。然后,通过对比损失函数来测量源领域和目标领域的特征之间的差异。对比损失函数的目标是使源领域和目标领域的特征在特定的度量空间中更加接近。最后,CAN通过最小化对比损失来优化特征提取器,以使源领域的特征能够适应目标领域。 该论文还对CAN进行了实验验证。实验结果表明,与其他无监督领域自适应方法相比,CAN在多个图像分类任务上取得了更好的性能,证明了其有效性和优越性。 综上所述,这篇CVPR 2019论文介绍了一种用于无监督领域自适应的对比适应网络,通过对源领域和目标领域的特征进行对比学习,使得源领域的特征能够适应目标领域。该方法在实验中展现了较好的性能,有望在无监督领域自适应任务中发挥重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值