点击下方卡片,关注“CVer”公众号
AI/CV重磅干货,第一时间送达
点击进入—>【自动驾驶】投稿交流群
添加微信号:CVer2233,小助手会拉你进群!
扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!
近日,清华大学李骏院士团队最新研究成果被国际顶级期刊《IEEE Transactions on Pattern Analysis and Machine Intelligence》(T-PAMI)正式录用。T-PAMI是人工智能领域公认的最具影响力的国际期刊之一。其影响因子常年位居计算机科学与人工智能领域前列,最新的影响因子为20.8。被录用论文第一作者是来自汽车自动驾驶安全实验室李骏院士与张新钰老师联合指导的2020级博士生杨磊。该研究提出了一种面向智能网联汽车的鲁棒视觉感知通用框架。
论文题目:BEVHeight++: Toward Robust Visual Centric 3D Object Detection
01 技术亮点
(1) 高度编码,鲁棒建模
传统深度估计在远距离易失效,团队提出一种基于高度的空间建模方法,利用物体到地面的垂直距离进行三维空间建模,实现了与距离无关且对相机位姿变动鲁棒的空间表示。
基于高度的空间建模方法
(2) 双分支融合,强化特征
团队在构建基于高度建模的网络分支与基于深度建模的网络分支的基础上,提出通道注意力图像视角融合和交叉注意力鸟瞰视角融合的两阶段融合架构,生成抗干扰强的融合鸟瞰视角特征图,适配车端(低视角)与路侧(高视角)场景不同相机安装条件。
BEVHeight++感知模型整体框架
(3) 动态离散化,优化误差
设计高度信息动态离散化策略,自适应调整离散化区间分布规律,减少高度估计误差对三维空间建模的影响。
02 性能表现
研究在两大路侧场景数据集(DAIR-V2X-I、Rope3D)和五大车端场景数据集(nuScenes、Waymo、KITTI、KITTI-360、nuScenes-C)上进行了全面验证。
在DAIR-V2X-I路侧场景测试中,团队提出的BEVHeight++模型在相机位姿扰动等噪声环境下相比现有方法精度提升高达+28.2%。在nuScenes车端场景测试中,BEVHeight++模型在传感器故障挑战下,相比现有方法NDS(综合检测评分)和mAP(平均精度)分别提升+9.3%和+8.8%。在KITTI车端数据集与DAIR-V2X-I路侧数据集的跨场景泛化测试中,BEVHeight++模型表现出较强的跨视角场景迁移能力。
BEVHeight++感知模型路侧场景测试结果
03 实际意义
该技术能够为智慧交通与智能网联汽车提供鲁棒可靠的环境感知能力:
(1)鲁棒性强:在相机位姿变动、运动模糊等噪声扰动下,BEVHeight++均表现出了较强的鲁棒性,助力提升自动驾驶系统安全性。
(2)所提方法已被NVIDIA公司 DeepStream人工智能算法平台产业应用,表现出较强实用价值及对工业领域的重要影响。
李骏院士团队简介
清华大学李骏院士团队致力于研究以智慧城市、智能交通、智能汽车(SCSTSV)为核心理念的未来城市智能共享出行架构及智能共享运载工具,并在此基础上不断探索基于使能赋能融合一体化技术的高级智能网联汽车在各种复杂城市场景下实现更高效、更安全的协同网联驾驶(CCAD)和协同网联运载(CCAM)。构建智能驾驶融合感知发明专利群(美国授权发明专利10项,中国授权发明专利50项),团队研究成果已发表在T-PAMI,T-ITS、T-NNLS、T-VT、Information Fusion、Pattern Recognition、CVPR、ICCV、ICRA、IROS、ITSC等自动驾驶知名期刊和国际学术会议上。
何恺明在MIT授课的课件PPT下载
在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!
CVPR 2025 论文和代码下载
在CVer公众号后台回复:CVPR2025,即可下载CVPR 2025论文和代码开源的论文合集
ECCV 2024 论文和代码下载
在CVer公众号后台回复:ECCV2024,即可下载ECCV 2024论文和代码开源的论文合集
自动驾驶交流群成立
扫描下方二维码,或者添加微信号:CVer2233,即可添加CVer小助手微信,便可申请加入CVer-垂直方向和论文投稿微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。 一定要备注:研究方向+地点+学校/公司+昵称(如自动驾驶+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲扫码或加微信号: CVer2233,进交流群 CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集上万人! ▲扫码加入星球学习
▲点击上方卡片,关注CVer公众号 整理不易,请点赞和在看