平稳时间序列的大样本OLS回归

该博客探讨了在平稳时间序列背景下,如何运用大样本OLS回归进行分析。文章介绍了必要的记号与假设,包括遍历平稳性、线性性等,并通过定理阐述了回归参数估计量的性质及渐近分布。此外,还详细讨论了条件异方差和同方差情况下的假设检验方法。
摘要由CSDN通过智能技术生成

有了《独立同分布的大样本OLS回归》的铺垫,现在进一步将OLS推广到平稳时间序列的情况。

思路还是一样:

  • 进行点估计,再研究估计量的性质;
  • 构造统计量,在大样本下推导其渐近分布,并进行假设检验

这里的各种计算与上一篇非常像,需要注意的是大数定律和中心极限定理在这里的使用条件(遍历平稳、鞅差分过程等)与上一篇不同,因此也需要不同的假设。

1 记号与假设

Q = E ( x t x t ′ ) Q=\text{E}(x_t x_t') Q=E(xtxt) V = Var ( x t ε t ) V=\text{Var}(x_t\varepsilon_t) V=Var(xtεt)

  • 假设1 遍历平稳性(Ergodic stationary) { x t ′ , y t } ′ \{x_t',y_t\}' { xt,yt} t = 1 , … , N t=1,\ldots,N t=1,,N是可观测的遍历平稳过程;
  • 假设2 线性性 y t = x t ′ β + ε t y_t=x_t'\beta+\varepsilon_t yt=xtβ+εt,可写作矩阵形式 y = X β + ε y=X\beta+\varepsilon y=Xβ+ε
  • 假设3 模型正确设定 E ( ε t ∣ x t ) = 0 \text{E}(\varepsilon_t|x_t)=0 E(εtxt)=0 E ( ε t 2 ) = σ 2 < ∞ \text{E}(\varepsilon_t^2)=\sigma^2<\infty E(εt2)=σ2<
  • 假设4 非奇异性 K × K K\times K K×K矩阵 Q Q Q是对称、有限、非奇异的;
  • 假设5 鞅差分:相对于 { x s ε s , s < t } \{x_s \varepsilon_s, s\lt t\} { xsεs,s<t}
    生成的 σ \sigma σ-域, { x t ε t } \{x_t \varepsilon_t\} { xtεt}为一鞅差分序列,且 K × K K\times K K×K矩阵 V V V是对称、有限、正定的;
  • 假设6 条件同方差 E ( ε t 2 ∣ x t ) = σ 2 \text{E}(\varepsilon_t^2|x_t)=\sigma^2 E(εt2xt)=σ2

假设1包含了上一篇中的独立同分布过程。由于不再是在独立同分布假设下,因此严格外生性 E ( ε t ∣ X ) = 0 \text{E}(\varepsilon_t|X)=0 E(εtX)=0不一定可以满足。假设3允许 x t x_t xt包含前定变量(predetermined variables)如滞后的因变量 y t 1 y_{t_1} yt1等,另外,由于有假设3的保证, V = Var ( x t ε t ) = E ( x t x t ′ ε t 2 ) V=\text{Var}(x_t\varepsilon_t)=\text{E}(x_t x_t' \varepsilon^2_t) V=Var(xtεt)=E(xtxtεt2)

2 一些定理

定理1 遍历平稳随机样本的弱大数定律:假设 { Z t } t = 1 n \{Z_t\}_{t=1}^n { Zt}t=1n为遍历平稳过程, E ( Z t ) = μ \text{E}(Z_t)=\mu E(Zt)=μ E ( ∣ Z t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值